The paper presents a sufficient condition for strong metric sub-regularity (SMsR) of the system of first order optimality conditions (optimality system) for a Mayer-type optimal control problem with a dynamics affine with respect to the control. The SMsR property at a reference solution means that any solution of the optimality system, subjected to "small" disturbances, which is close enough to the reference one is at a distance to it, at most proportional to the size of the disturbance. The property is well understood for problems satisfying certain coercivity conditions, which however, are not fulfilled for affine problems.
机构:
Univ Brest, Unite CNRS UMR6205, Lab Math Bretagne Atlantique, F-29200 Brest, FranceUniv Brest, Unite CNRS UMR6205, Lab Math Bretagne Atlantique, F-29200 Brest, France
Quincampoix, M.
Veliov, V. M.
论文数: 0引用数: 0
h-index: 0
机构:
Vienna Univ Technol, Inst Math Methods Econ, A-1040 Vienna, AustriaUniv Brest, Unite CNRS UMR6205, Lab Math Bretagne Atlantique, F-29200 Brest, France
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Cannarsa, P.
Frankowska, H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Univ Paris Diderot, Univ Sorbonne, CNRS,IMJ PRG,UMR 7586, F-75252 Paris, FranceUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Frankowska, H.
Scarinci, T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Univ Paris Diderot, Univ Sorbonne, CNRS,IMJ PRG,UMR 7586, F-75252 Paris, FranceUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy