On the Regularity of Mayer-Type Affine Optimal Control Problems

被引:4
|
作者
Osmolovskii, Nikolai P. [1 ,2 ,3 ]
Veliov, Vladimir M. [4 ]
机构
[1] Univ Technol & Humanities Radom, Dept Informat & Math, Radom, Poland
[2] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
[3] Moscow State Univ Civil Engn, Dept Appl Math, Moscow, Russia
[4] Vienna Univ Technol, Inst Stat & Math Methods Econ, Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1007/978-3-030-41032-2_6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper presents a sufficient condition for strong metric sub-regularity (SMsR) of the system of first order optimality conditions (optimality system) for a Mayer-type optimal control problem with a dynamics affine with respect to the control. The SMsR property at a reference solution means that any solution of the optimality system, subjected to "small" disturbances, which is close enough to the reference one is at a distance to it, at most proportional to the size of the disturbance. The property is well understood for problems satisfying certain coercivity conditions, which however, are not fulfilled for affine problems.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 50 条
  • [1] On the regularity and stability of the Mayer-type convex optimal control problems
    Djendel, Khelifa
    Zhang, Haisen
    Zhou, Zhongcheng
    ASIAN JOURNAL OF CONTROL, 2023, 25 (02) : 1499 - 1509
  • [2] A Mayer-type optimal control for multivalued logic control networks with undesirable states
    Liu, Yang
    Chen, Hongwei
    Wu, Bo
    Sun, Liangjie
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (12) : 3357 - 3365
  • [3] Mayer-Type Optimal Control of Probabilistic Boolean Control Network With Uncertain Selection Probabilities
    Toyoda, Mitsuru
    Wu, Yuhu
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) : 3079 - 3092
  • [4] On the Metric Regularity of Affine Optimal Control Problems
    Quincampoix, Marc
    Scarinci, Teresa
    Veliov, Vladimir M.
    JOURNAL OF CONVEX ANALYSIS, 2020, 27 (02) : 509 - 533
  • [5] Holder Regularity in Bang-Bang Type Affine Optimal Control Problems
    Corella, Alberto Dominguez
    Veliov, Vladimir M.
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 306 - 313
  • [6] Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics
    Sarychev, AV
    Torres, DFM
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (02): : 237 - 254
  • [7] Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics
    A. V. Sarychev
    D. F. M. Torres
    Applied Mathematics and Optimization, 2000, 41 : 237 - 254
  • [8] Metric sub-regularity in optimal control of affine problems with free end state
    Osmolovskii, N. P.
    Veliov, V. M.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [9] Mayer and optimal stopping stochastic control problems with discontinuous cost
    Goreac, Dan
    Serea, Oana-Silvia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 327 - 342
  • [10] EXISTENCE THEOREMS FOR HEREDITARY LAGRANGE AND MAYER PROBLEMS OF OPTIMAL CONTROL
    ANGELL, TS
    SIAM JOURNAL ON CONTROL, 1976, 14 (01): : 1 - 18