Entire positive k-convex solutions to k-Hessian type equations and systems

被引:3
|
作者
Bai, Shuangshuang [1 ]
Zhang, Xuemei [1 ]
Feng, Meiqiang [2 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2022年 / 30卷 / 02期
基金
北京市自然科学基金;
关键词
k-Hessian type equation and system; entire positive k-convex solution; monotone iterative; existence; RADIAL SOLUTIONS; EXISTENCE; NONEXISTENCE;
D O I
10.3934/era.2022025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of entire positive solutions for the k-Hessian type equation S-k(D-2 u + alpha I) = p(vertical bar x vertical bar) f(k) (u), x is an element of R-n and system {S-k(D(2)u + alpha I) = p(vertical bar x vertical bar) f(k) (v), x is an element of R-n, S-k(D(2)v + alpha I) = q(vertical bar x vertical bar)g(k)(u), x is an element of R-n, where D(2)u is the Hessian of u and I denotes unit matrix. The arguments are based upon a new monotone iteration scheme.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 50 条
  • [31] Nontrivial solutions for multiparameter k-Hessian systems
    Ding, Huanhuan
    Gao, Chenghua
    He, Xingyue
    QUAESTIONES MATHEMATICAE, 2024,
  • [32] A characterization of semistable radial solutions of k-Hessian equations
    Navarro, Miguel Angel
    Sanchez, Justino
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)
  • [33] Existence and multiplicity for negative solutions of k-Hessian equations
    Wei, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 615 - 640
  • [34] Existence of radial solutions to biharmonic k-Hessian equations
    Escudero, Carlos
    Torres, Pedro J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) : 2732 - 2761
  • [35] k-HESSIAN CURVATURE TYPE EQUATIONS IN SPACE FORMS
    Zhou, Jundong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (18) : 1 - 14
  • [36] A Bernstein type theorem for parabolic k-Hessian equations
    Nakamori, Saori
    Takimoto, Kazuhiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 117 : 211 - 220
  • [37] Boundary Regularity for k-Hessian Equations
    You Li
    Meng Ni Li
    Yan Nan Liu
    Acta Mathematica Sinica, English Series, 2023, 39 : 2393 - 2413
  • [38] Boundary Regularity for k-Hessian Equations
    You LI
    Meng Ni LI
    Yan Nan LIU
    Acta Mathematica Sinica,English Series, 2023, (12) : 2393 - 2413
  • [39] Local solvability of the k-Hessian equations
    TIAN GuJi
    WANG Qi
    XU Chao-Jiang
    ScienceChina(Mathematics), 2016, 59 (09) : 1753 - 1768
  • [40] Boundary Regularity for k-Hessian Equations
    Li, You
    Li, Meng Ni
    Liu, Yan Nan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (12) : 2393 - 2413