Influence of a nonlinear coupling on the supratransmission effect in modified sine-Gordon and Klein-Gordon lattices

被引:18
|
作者
Alima, R. [1 ,2 ]
Morfu, S. [1 ]
Marquie, P. [1 ]
Bodo, B. [2 ]
Essimbi, B. Z. [2 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, FRE2005, LE2I,Arts & Metiers, F-21000 Dijon, France
[2] Univ Yaounde, Univ Yaounde 1, Dept Phys, Lab Elect,Fac Sci, POB 812, Yaounde, Cameroon
关键词
Supratransmission; Solitons; Localized modes; Nonlinear waveguides; WAVE-GUIDE ARRAYS; TRANSMISSION;
D O I
10.1016/j.chaos.2017.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we analyze the conditions leading to the nonlinear supratransmission phenomenon in two different models: a modified fifth order Klein-Gordon system and a modified sine-Gordon system. The modified models considered here are those with mixed coupling, the pure linear coupling being associated with a nonlinear coupling. Especially, we numerically quantify the influence of the nonlinear coupling coefficient on the threshold amplitude which triggers the nonlinear supratransmission phenomenon. Our main result shows that, in both models, when the nonlinear coupling coefficient increases, the threshold amplitude triggering the nonlinear supratransmission phenomenon decreases. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [41] Periodic traveling wave solutions of discrete nonlinear Klein-Gordon lattices
    Hennig, Dirk
    Karachalios, Nikos I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18400 - 18419
  • [42] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [43] Decay for nonlinear Klein-Gordon equations
    Georgiev, V
    Lucente, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04): : 529 - 555
  • [44] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499
  • [45] Decay for nonlinear Klein-Gordon equations
    Vladimir Georgiev
    Sandra Lucente
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 529 - 555
  • [46] NONLINEAR KLEIN-GORDON SOLITON MECHANICS
    REINISCH, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (21): : 3395 - 3440
  • [47] Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations
    Macias-Diaz, J. E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 89 - 102
  • [48] REMARKS ON A NONLINEAR KLEIN-GORDON EQUATION
    GARUE, S
    MONTALDI, E
    LETTERE AL NUOVO CIMENTO, 1976, 17 (04): : 132 - 134
  • [49] Spectral methods using Legendre wavelets for nonlinear Klein\Sine-Gordon equations
    Yin, Fukang
    Tian, Tian
    Song, Junqiang
    Zhu, Min
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 : 321 - 334
  • [50] Global existence in infinite lattices of nonlinear oscillators: The discrete Klein-Gordon equation
    Karachalios, Nikos I.
    GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 463 - 482