Kinetic Study of Hydrogen Evolution Reaction over Strained MoS2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy

被引:258
|
作者
Li, Hong [1 ]
Du, Minshu [5 ]
Mleczko, Michal J. [2 ]
Koh, Ai Leen [3 ]
Nishi, Yoshio [2 ]
Pop, Eric [2 ,4 ]
Bard, Alien J. [5 ]
Zheng, Xiaolin [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Stanford Nano Shared Facil, Stanford, CA 94305 USA
[4] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
[5] Univ Texas Austin, Dept Chem, Ctr Electrochem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
GENERATION/TIP COLLECTION MODE; ELECTRODE-REACTION MECHANISM; ACTIVE EDGE SITES; PALLADIUM NANOPARTICLES; FEEDBACK MODE; OXIDATION; ELECTROCATALYSIS; FILMS;
D O I
10.1021/jacs.6b01377
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molybdenum disulfide (MoS2), with its active edge sites, is a proposed alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Recently, the inert basal of was activated and optimized plane MoS2 successfully with excellent intrinsic HER activity by creating and further straining sulfur (S) vacancies. Nevertheless, little is known about the HER kinetics of those S vacancies and the additional effects from elastic tensile strain. Herein, scanning electrochemical microscopy was used to determine the HER kinetic data for both unstrained S vacancies (formal potential E-v(0) = -0.53 V-Ag/AgCl, electron-transfer coefficient alpha(v) = 0.4, electron-transfer rate constant k(v)(0) = 2.3 X 10(-4) cm/s) and strained S vacancies (E-sv(0) = -0.53 V-Ag/AgCl, alpha(sv) = 0.4, k(sv)(0) = 1.0 X 10(-3) cm/s
引用
收藏
页码:5123 / 5129
页数:7
相关论文
共 50 条
  • [31] A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy
    Liang, Zhenxing
    Ahn, Hyun S.
    Bard, Allen J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (13) : 4854 - 4858
  • [32] Fast Scan mode of scanning electrochemical microscopy: In-situ characterization of phase transition and mapping the hydrogen evolution activity for MoS2
    Zhenyu Wang
    Tong Sun
    Changan HuangFu
    Sisi Jiang
    Chaoqun Gu
    Liying Jiao
    Zonghua Wang
    Nano Research, 2023, 16 : 10011 - 10017
  • [33] Fast Scan mode of scanning electrochemical microscopy: In-situ characterization of phase transition and mapping the hydrogen evolution activity for MoS2
    Wang, Zhenyu
    Sun, Tong
    HuangFu, Changan
    Jiang, Sisi
    Gu, Chaoqun
    Jiao, Liying
    Wang, Zonghua
    NANO RESEARCH, 2023, 16 (07) : 10011 - 10017
  • [34] First-principles study of sulfur vacancy concentration effect on the electronic structures and hydrogen evolution reaction of MoS2
    Zhou, Wenyu
    Dong, Lichun
    Tan, Luxi
    Tang, Qing
    NANOTECHNOLOGY, 2021, 32 (14)
  • [35] Engineering Isolated S Vacancies over 2D MoS2 Basal Planes for Catalytic Hydrogen Evolution
    Jiang, Ling
    Zhou, Qian
    Li, Jing-Jing
    Xia, Yu-Xin
    Li, Huan-Xin
    Li, Yong-Jun
    ACS APPLIED NANO MATERIALS, 2022, 5 (03) : 3521 - 3530
  • [36] Reaction Mechanism for the Hydrogen Evolution Reaction on the Basal Plane Sulfur Vacancy Site of MoS2 Using Grand Canonical Potential Kinetics
    Huang, Yufeng
    Nielsen, Robert J.
    Goddard, William A., III
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (48) : 16773 - 16782
  • [38] Boundary activated hydrogen evolution reaction on monolayer MoS2
    Jianqi Zhu
    Zhi-Chang Wang
    Huijia Dai
    Qinqin Wang
    Rong Yang
    Hua Yu
    Mengzhou Liao
    Jing Zhang
    Wei Chen
    Zheng Wei
    Na Li
    Luojun Du
    Dongxia Shi
    Wenlong Wang
    Lixin Zhang
    Ying Jiang
    Guangyu Zhang
    Nature Communications, 10
  • [39] Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction
    Ghanashyam, Gyawali
    Jeong, Hae Kyung
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (01) : 120 - 127
  • [40] Doped MoS2 Polymorph for an Improved Hydrogen Evolution Reaction
    Eidsvag, Hakon
    Vajeeston, Ponniah
    Velauthapillai, Dhayalan
    ACS OMEGA, 2023, 8 (29): : 26263 - 26275