Combined perturbation bounds: I. Eigensystems and singular value decompositions

被引:9
|
作者
Li, Wen [1 ]
Sun, Weiwei
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
eigensystems; singular subspace; singular value; combined perturbation bound;
D O I
10.1137/060648969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present some new combined perturbation bounds of eigenvalues and eigensubspaces for a Hermitian matrix H, particularly in an asymptotic sense, delta(2)(12)parallel to sin Theta((U) over tilde (1))parallel to(2)(F)+ Sigma(r)(i=1)(lambda(i) - (lambda) over tilde (i))(2) <= parallel to Delta HU1 parallel to(2)(F) + O(parallel to Delta HU1 parallel to(4)(F)), where lambda(i) denotes the eigenvalues of H and U-1 the eigensubspace corresponding to the eigenvalues lambda(i), i = 1, 2,..., r. The bound for each factor of eigensystems is optimal due to the sin Theta theorem and the Hoffman-Wielandt theorem. In addition, combined perturbation bounds for singular value decompositions and combined perturbation bounds in some, more general, measures are also obtained.
引用
收藏
页码:643 / 655
页数:13
相关论文
共 50 条
  • [41] Perturbation bounds for eigenvalues of diagonalizable matrices and singular values
    Zhou, Duanmei
    Chen, Guoliang
    Wu, Guoxing
    Chen, Xiaoyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [42] Perturbation bounds for eigenvalues of diagonalizable matrices and singular values
    Duanmei Zhou
    Guoliang Chen
    Guoxing Wu
    Xiaoyan Chen
    Journal of Inequalities and Applications, 2016
  • [43] Sharp upper bounds for a variational problem with singular perturbation
    Sergio Conti
    Camillo De Lellis
    Mathematische Annalen, 2007, 338 : 119 - 146
  • [44] Relative Perturbation Bounds for Matrix Eigenvalues and Singular Values
    Patra A.
    Srivastava P.D.
    International Journal of Applied and Computational Mathematics, 2018, 4 (6)
  • [45] ON PERTURBATION THEORY .I.
    CHAKRAVA.NK
    BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY, 1966, 58 (1-2): : 1 - &
  • [46] ON THE STRUCTURE OF GENERALIZED SINGULAR-VALUE AND QR DECOMPOSITIONS
    MOOR, BD
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (01) : 347 - 358
  • [47] Efficient and accurate computation of generalized singular value decompositions
    Drmac, Z
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XI, 2001, 4474 : 285 - 293
  • [48] Unitary and singular value decompositions of parametric processes in fibers
    McKinstrie, C. J.
    OPTICS COMMUNICATIONS, 2009, 282 (04) : 583 - 593
  • [49] Singular Value Decompositions and Low Rank Approximations of Tensors
    Weiland, Siep
    van Belzen, Femke
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1171 - 1182
  • [50] Neural network models for the quaternion singular value decompositions
    Huang, Baohua
    Li, Wen
    APPLIED MATHEMATICAL MODELLING, 2024, 129 : 780 - 805