Combined perturbation bounds: I. Eigensystems and singular value decompositions

被引:9
|
作者
Li, Wen [1 ]
Sun, Weiwei
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
eigensystems; singular subspace; singular value; combined perturbation bound;
D O I
10.1137/060648969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present some new combined perturbation bounds of eigenvalues and eigensubspaces for a Hermitian matrix H, particularly in an asymptotic sense, delta(2)(12)parallel to sin Theta((U) over tilde (1))parallel to(2)(F)+ Sigma(r)(i=1)(lambda(i) - (lambda) over tilde (i))(2) <= parallel to Delta HU1 parallel to(2)(F) + O(parallel to Delta HU1 parallel to(4)(F)), where lambda(i) denotes the eigenvalues of H and U-1 the eigensubspace corresponding to the eigenvalues lambda(i), i = 1, 2,..., r. The bound for each factor of eigensystems is optimal due to the sin Theta theorem and the Hoffman-Wielandt theorem. In addition, combined perturbation bounds for singular value decompositions and combined perturbation bounds in some, more general, measures are also obtained.
引用
收藏
页码:643 / 655
页数:13
相关论文
共 50 条