Quantum-limit Hall effect with large carrier density in topological semimetals

被引:1
|
作者
Yang, Guang [1 ]
Zhang, Yi [1 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
关键词
SURFACE FERMI ARCS; DIRAC SEMIMETAL; WEYL; TRANSPORT; OSCILLATIONS; DISCOVERY; HIERARCHY; FLUID;
D O I
10.1103/PhysRevB.103.L241104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quantum-limit Hall effect at v = nh/eB similar to O(1) that hosts a variety of exotic quantum phenomena requires demanding strong magnetic field B and low carrier density n. We propose to realize the quantum-limit Hall effect even in the presence of large carrier density residues n(e) and n(h) in a relatively weak and variable magnetic field B in topological semimetals, where a single Fermi-surface contour allows both electron-type and hole-type carriers and approaches charge neutrality when n(e) approximate to n(h). The underlying filling factor v = vertical bar n(e) - n(h)vertical bar h/eB also offers an example that violates Onsager's relation for quantum oscillations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Universality test of the quantum Hall effect on topological insulator
    Misawa, Tetsuro
    Fukuyama, Yasuhiro
    Okazaki, Yuma
    Nakamura, Shuji
    Nasaka, Nariaki
    Sasagawa, Takao
    Kaneko, Nobu-Hisa
    2016 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2016), 2016,
  • [42] Unconventional quantum Hall effect in Floquet topological insulators
    Tahir, M.
    Vasilopoulos, P.
    Schwingenschlogl, U.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (38)
  • [43] The stability of the fractional quantum Hall effect in topological insulators
    DaSilva, Ashley M.
    SOLID STATE COMMUNICATIONS, 2011, 151 (20) : 1444 - 1446
  • [44] QUANTUM ANOMALOUS HALL EFFECT IN MAGNETIC TOPOLOGICAL INSULATORS
    Xue, Qi-Kun
    He, Ke
    Wang, Yayu
    2016 IEEE 29TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2016, : 1 - 1
  • [45] Quantum anomalous Hall effect in magnetic topological insulators
    Feng X.
    He K.
    Xue Q.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2020, 52 (06): : 1 - 11
  • [46] Topological aspects of phases in fractional quantum Hall effect
    Banerjee, D
    PHYSICS LETTERS A, 2000, 269 (2-3) : 138 - 143
  • [47] REMARK ON THE TOPOLOGICAL APPROACH TO THE QUANTUM HALL-EFFECT
    RIESS, J
    SOLID STATE COMMUNICATIONS, 1990, 74 (12) : 1257 - 1260
  • [48] The evolution of the topological structure of the integral quantum Hall effect
    Duan, YS
    Li, S
    PHYSICS LETTERS A, 1998, 246 (1-2) : 172 - 180
  • [49] Weakened Topological Protection of the Quantum Hall Effect in a Cavity
    Rokaj, Vasil
    Wang, Jie
    Sous, John
    Penz, Markus
    Ruggenthaler, Michael
    Rubio, Angel
    PHYSICAL REVIEW LETTERS, 2023, 131 (19)
  • [50] Magnetic topological insulators and quantum anomalous hall effect
    Kou, Xufeng
    Fan, Yabin
    Lang, Murong
    Upadhyaya, Pramey
    Wang, Kang L.
    SOLID STATE COMMUNICATIONS, 2015, 215 : 34 - 53