Machine-learning based spectral classification for spectroscopic single-molecule localization microscopy

被引:19
|
作者
Zhang, Zheyuan [1 ]
Zhang, Yang [1 ]
Ying, Leslie [2 ]
Sun, Cheng [3 ]
Zhang, Hao F. [1 ]
机构
[1] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[2] Univ Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[3] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1364/OL.44.005864
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures the spatial locations and emission spectra of single molecular emissions and. enables simultaneous multicolor super-resolution imaging. Existing sSMLM relies on extracting spectral signatures, such as weighted spectral centroids, to distinguish different molecular labels. However, the rich information carried by the complete spectral profiles is not fully utilized; thus, the misclassification rate between molecular labels can be high at low spectral analysis photon budget. We developed a machine learning (ML)-based method to analyze the full spectral profiles of each molecular emission and reduce the misclassification rate. We experimentally validated our method by imaging immunofluorescendy labeled COS-7 cells using two far-red dyes typically used in sSMLM (AF647 and CF660) to resolve mitochondria and. microtubules, respectively. We showed that the ML method achieved 10-fold reduction in misclassification and two-fold improvement in spectral data utilization comparing with the existing spectral centroid method. (C) 2019 Optical Society of America
引用
收藏
页码:5864 / 5867
页数:4
相关论文
共 50 条
  • [41] Single-molecule localization microscopy with microbial samples
    Feddersen H.
    Shin J.Y.
    Bramkamp M.
    BIOspektrum, 2019, 25 (2) : 170 - 173
  • [42] Recent progress on single-molecule localization microscopy
    Lusheng Gu
    Wei Ji
    Biophysics Reports, 2021, 7 (05) : 365 - 376
  • [43] Molecule counts in complex oligomers with single-molecule localization microscopy
    Baldering, Tim N.
    Bullerjahn, Jakob T.
    Hummer, Gerhard
    Heilemann, Mike
    Malkusch, Sebastian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (47)
  • [44] Single-molecule localization microscopy based on denoising, interpolation and local maxima
    Cheng, Tao
    MICROSCOPY, 2023, 72 (04) : 336 - 342
  • [45] Deep learning-driven adaptive optics for single-molecule localization microscopy
    Peiyi Zhang
    Donghan Ma
    Xi Cheng
    Andy P. Tsai
    Yu Tang
    Hao-Cheng Gao
    Li Fang
    Cheng Bi
    Gary E. Landreth
    Alexander A. Chubykin
    Fang Huang
    Nature Methods, 2023, 20 : 1748 - 1758
  • [46] Deep learning-driven adaptive optics for single-molecule localization microscopy
    Zhang, Peiyi
    Ma, Donghan
    Cheng, Xi
    Tsai, Andy P.
    Tang, Yu
    Gao, Hao-Cheng
    Fang, Li
    Bi, Cheng
    Landreth, Gary E.
    Chubykin, Alexander A.
    Huang, Fang
    NATURE METHODS, 2023, 20 (11) : 1748 - 1758
  • [47] Quantum Dots for Improved Single-Molecule Localization Microscopy
    Urban, Jennifer M.
    Chiang, Wesley
    Hammond, Jennetta W.
    Cogan, Nicole M. B.
    Litzburg, Angela
    Burke, Rebeckah
    Stern, Harry A.
    Gelbard, Harris A.
    Nilsson, Bradley L.
    Krauss, Todd D.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (10): : 2566 - 2576
  • [48] Single-molecule localization microscopy as nonlinear inverse problem
    Yu, Ji
    Elmokadem, Ahmed
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (41) : 20438 - 20445
  • [49] Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy
    Jradi, Fadi M.
    Lavis, Luke D.
    ACS CHEMICAL BIOLOGY, 2019, 14 (06) : 1077 - 1090
  • [50] Common fluorescent proteins for single-molecule localization microscopy
    Klementieva, Natalia V.
    Bozhanova, Nina G.
    Mishina, Natalie M.
    Zagaynova, Elena V.
    Lukyanov, Konstantin A.
    Mishin, Alexander S.
    ADVANCED MICROSCOPY TECHNIQUES IV; AND NEUROPHOTONICS II, 2015, 9536