Machine-learning based spectral classification for spectroscopic single-molecule localization microscopy

被引:19
|
作者
Zhang, Zheyuan [1 ]
Zhang, Yang [1 ]
Ying, Leslie [2 ]
Sun, Cheng [3 ]
Zhang, Hao F. [1 ]
机构
[1] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[2] Univ Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[3] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1364/OL.44.005864
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures the spatial locations and emission spectra of single molecular emissions and. enables simultaneous multicolor super-resolution imaging. Existing sSMLM relies on extracting spectral signatures, such as weighted spectral centroids, to distinguish different molecular labels. However, the rich information carried by the complete spectral profiles is not fully utilized; thus, the misclassification rate between molecular labels can be high at low spectral analysis photon budget. We developed a machine learning (ML)-based method to analyze the full spectral profiles of each molecular emission and reduce the misclassification rate. We experimentally validated our method by imaging immunofluorescendy labeled COS-7 cells using two far-red dyes typically used in sSMLM (AF647 and CF660) to resolve mitochondria and. microtubules, respectively. We showed that the ML method achieved 10-fold reduction in misclassification and two-fold improvement in spectral data utilization comparing with the existing spectral centroid method. (C) 2019 Optical Society of America
引用
收藏
页码:5864 / 5867
页数:4
相关论文
共 50 条
  • [1] Deep learning-based spectroscopic single-molecule localization microscopy
    Gaire, Sunil Kumar
    Daneshkhah, Ali
    Flowerday, Ethan
    Gong, Ruyi
    Frederick, Jane
    Backman, Vadim
    JOURNAL OF BIOMEDICAL OPTICS, 2024, 29 (06)
  • [2] Theoretical analysis of spectral precision in spectroscopic single-molecule localization microscopy
    Song, Ki-Hee
    Dong, Biqin
    Sun, Cheng
    Zhang, Hao F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (12):
  • [3] Symmetrically dispersed spectroscopic single-molecule localization microscopy
    Song, Ki-Hee
    Zhang, Yang
    Brenner, Benjamin
    Sun, Cheng
    Zhang, Hao F.
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [4] Symmetrically dispersed spectroscopic single-molecule localization microscopy
    Ki-Hee Song
    Yang Zhang
    Benjamin Brenner
    Cheng Sun
    Hao F. Zhang
    Light: Science & Applications, 9
  • [5] Symmetrically dispersed spectroscopic single-molecule localization microscopy
    Song, Ki-Hee
    Zhang, Yang
    Brenner, Benjamin
    Sun, Cheng
    Zhang, Hao F.
    Light: Science and Applications, 2020, 9 (01):
  • [6] Implementation and calibration of spectroscopic single-molecule localization microscopy
    Benjamin Brenner
    Wei-Hong Yeo
    Youngseop Lee
    Junghun Kweon
    Cheng Sun
    Hao F. Zhang
    BMC Methods, 2 (1):
  • [7] Spectroscopic single-molecule localization microscopy: applications and prospective
    Brenner, Benjamin
    Sun, Cheng
    Raymo, Francisco M.
    Zhang, Hao F. F.
    NANO CONVERGENCE, 2023, 10 (01)
  • [8] Spectroscopic single-molecule localization microscopy: applications and prospective
    Benjamin Brenner
    Cheng Sun
    Françisco M. Raymo
    Hao F. Zhang
    Nano Convergence, 10
  • [9] Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning
    Gaire, Sunil Kumar
    Zhang, Yang
    Li, Hongyu
    Yu, Ray
    Zhang, Hao F.
    Ying, Leslie
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (05): : 2705 - 2721
  • [10] Machine Learning for Single-Molecule Localization Microscopy: From Data Analysis to Quantification
    Liu, Jianli
    Li, Yumian
    Chen, Tailong
    Zhang, Fa
    Xu, Fan
    ANALYTICAL CHEMISTRY, 2024, 96 (28) : 11103 - 11114