Persistence in q-state Potts model:: A mean-field approach -: art. no. 026115

被引:4
|
作者
Manoj, G [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Ctr Stochast Proc Sci & Engn, Blacksburg, VA 24061 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevE.67.026115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the persistence properties of the T=0 coarsening dynamics of one-dimensional q-state Potts model using a modified mean-field approximation (MMFA). In this approximation, the spatial correlations between the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the mean density P(t) of persistent spins is imposed. For this model, it is known that P(t) follows a power-law decay with time, P(t)similar tot(-theta(q)), where theta(q) is the q-dependent persistence exponent. We study the spatial structure of the persistent region within the MMFA. We show that the persistent site pair correlation function P-2(r,t) has the scaling form P-2(r,t)=P(t)(2)f(r/t(1/2)) for all values of the persistence exponent theta(q). The scaling function has the limiting behavior f(x)similar tox(-2theta) (x<1) and f(x)-->1 (x>1). We then show within the independent interval approximation (IIA) that the distribution n(k,t) of separation k between two consecutive persistent spins at time t has the asymptotic scaling form n(k,t)=t(-2phi)g(t,k/t(phi)), where the dynamical exponent has the form phi=max(1/2,theta). The behavior of the scaling function for large and small values of the arguments is found analytically. We find that for small separations k<t(phi),n(k,t)similar toP(t)k(-tau), where tau=max[2(1-theta),2theta], while for large separations k>t(phi), g(t,x) decays exponentially with x. The unusual dynamical scaling form and the behavior of the scaling function is supported by numerical simulations.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] CORRELATIONS AND COARSENING IN THE Q-STATE POTTS-MODEL
    SIRE, C
    MAJUMDAR, SN
    PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4321 - 4324
  • [32] On superuniversality in the q-state Potts model with quenched disorder
    Delfino, Gesualdo
    Tartaglia, Elena
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [33] Q-STATE POTTS-MODEL ON THE CHECKERBOARD LATTICE
    RAMMAL, R
    MAILLARD, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (05): : 1073 - 1081
  • [34] THE CLUSTER INVESTIGATION OF THE Q-STATE POTTS-MODEL
    ZINENKO, VI
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 114 (02): : 695 - 703
  • [35] PERCOLATION RENORMALIZATION-GROUP APPROACH TO THE Q-STATE POTTS-MODEL
    HU, CK
    CHEN, CN
    PHYSICAL REVIEW B, 1988, 38 (04): : 2765 - 2778
  • [36] Thermal critical exponents of the q-state Potts model
    Batchelor, Murray T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (13)
  • [37] INTERFACIAL WETTING IN THE Q-STATE POTTS-MODEL
    DERRIDA, B
    SCHICK, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08): : 1439 - 1448
  • [38] CLUSTERS AND DROPLETS IN THE Q-STATE POTTS-MODEL
    CONIGLIO, A
    PERUGGI, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (06): : 1873 - 1883
  • [39] Mean-field limit of systems with multiplicative noise -: art. no. 056102
    Muñoz, MA
    Colaiori, F
    Castellano, C
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [40] Multilayer properties of superficial and intergranular segregation isotherms:: A mean-field approach -: art. no. 195413
    Berthier, F
    Creuze, J
    Tétot, R
    Legrand, B
    PHYSICAL REVIEW B, 2002, 65 (19): : 1 - 17