Persistence in q-state Potts model:: A mean-field approach -: art. no. 026115

被引:4
|
作者
Manoj, G [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Ctr Stochast Proc Sci & Engn, Blacksburg, VA 24061 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevE.67.026115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the persistence properties of the T=0 coarsening dynamics of one-dimensional q-state Potts model using a modified mean-field approximation (MMFA). In this approximation, the spatial correlations between the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the mean density P(t) of persistent spins is imposed. For this model, it is known that P(t) follows a power-law decay with time, P(t)similar tot(-theta(q)), where theta(q) is the q-dependent persistence exponent. We study the spatial structure of the persistent region within the MMFA. We show that the persistent site pair correlation function P-2(r,t) has the scaling form P-2(r,t)=P(t)(2)f(r/t(1/2)) for all values of the persistence exponent theta(q). The scaling function has the limiting behavior f(x)similar tox(-2theta) (x<1) and f(x)-->1 (x>1). We then show within the independent interval approximation (IIA) that the distribution n(k,t) of separation k between two consecutive persistent spins at time t has the asymptotic scaling form n(k,t)=t(-2phi)g(t,k/t(phi)), where the dynamical exponent has the form phi=max(1/2,theta). The behavior of the scaling function for large and small values of the arguments is found analytically. We find that for small separations k<t(phi),n(k,t)similar toP(t)k(-tau), where tau=max[2(1-theta),2theta], while for large separations k>t(phi), g(t,x) decays exponentially with x. The unusual dynamical scaling form and the behavior of the scaling function is supported by numerical simulations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q -: art. no. 066107
    Kim, SY
    Creswick, RJ
    PHYSICAL REVIEW E, 2001, 63 (06):
  • [2] MEAN-FIELD THEORY OF RANDOM-SITE Q-STATE POTTS MODELS
    VANENTER, ACD
    VANHEMMEN, JL
    POSPIECH, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (03): : 791 - 801
  • [3] Random-cluster multihistogram sampling for the q-state Potts model -: art. no. 036109
    Weigel, M
    Janke, W
    Hu, CK
    PHYSICAL REVIEW E, 2002, 65 (03):
  • [4] MEAN-FIELD THEORY WITH SYMMETRY-BREAKING FOR THE CRITICAL PROPERTIES OF THE Q-STATE POTTS-MODEL
    COCHO, G
    MARTINEZMEKLER, GC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (05): : 1081 - 1091
  • [5] MEAN-FIELD RENORMALIZATION-GROUP STUDY OF ANTIFERROMAGNETIC Q-STATE POTTS MODELS
    MARQUES, MC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05): : 1297 - 1301
  • [6] THE MEAN-FIELD THEORY OF A Q-STATE NEURAL NETWORK MODEL
    COOK, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (12): : 2057 - 2067
  • [7] Yang-Lee zeros of the Q-state Potts model on recursive lattices -: art. no. 046110
    Ghulghazaryan, RG
    Ananikian, NS
    Sloot, PMA
    PHYSICAL REVIEW E, 2002, 66 (04): : 9
  • [8] Phase transition in an asymmetric generalization of the zero-temperature q-state Potts model -: art. no. 046105
    Majd, N
    Aghamohammadi, A
    Khorrami, M
    PHYSICAL REVIEW E, 2001, 64 (04): : 5 - 461055
  • [9] MEAN-FIELD THEORY FOR THE Q-STATE POTTS-GLASS NEURAL NETWORK WITH BIASED PATTERNS
    BOLLE, D
    COOLS, R
    DUPONT, P
    HUYGHEBAERT, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (03): : 549 - 562
  • [10] Double stochastic resonance in the mean-field q-state clock model
    Baek, Seung Ki
    Kim, Beom Jun
    PHYSICAL REVIEW E, 2012, 86 (01):