Bayesian density estimation and model selection using nonparametric hierarchical mixtures

被引:28
|
作者
Argiento, Raffaele [2 ]
Guglielmi, Alessandra [1 ]
Pievatolo, Antonio [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] CNR IMATI, Milan, Italy
关键词
DIRICHLET PROCESS; PRIORS; COMPONENTS;
D O I
10.1016/j.csda.2009.11.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A class of nonparametric hierarchical mixtures is considered for Bayesian density estimation. This class, namely mixtures of parametric densities on the positive reals with a normalized generalized gamma process as mixing measure, is very flexible in the detection of clusters in the data. With an almost sure approximation of the posterior trajectories of the mixing process a Markov chain Monte Carlo algorithm is run to estimate linear and nonlinear functionals of the predictive distributions. The best-fitting mixing measure is found by minimizing a Bayes factor for parametric against nonparametric alternatives. Simulated and historical data illustrate the method, finding a trade-off between the best-fitting model and the correct identification of the number of components in the mixture. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:816 / 832
页数:17
相关论文
共 50 条
  • [31] Bayesian nonparametric density estimation under length bias
    Hatjispyros, Spyridon J.
    Nicoleris, Theodoros
    Walker, Stephen G.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 8064 - 8076
  • [32] STATE PRICE DENSITY ESTIMATION VIA NONPARAMETRIC MIXTURES
    Yuan, Ming
    ANNALS OF APPLIED STATISTICS, 2009, 3 (03): : 963 - 984
  • [33] Nonparametric regression using Bayesian variable selection
    Smith, M
    Kohn, R
    JOURNAL OF ECONOMETRICS, 1996, 75 (02) : 317 - 343
  • [34] The Kernel Density Estimation of Nonparametric Model
    Nong, Jifu
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1173 - 1177
  • [35] Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures
    Jurado, Napoleon Vargas
    Eskridge, Kent M.
    Kachman, Stephen D.
    Lewis, Ronald M.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2018, 23 (02) : 190 - 207
  • [36] Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures
    Napoleón Vargas Jurado
    Kent M. Eskridge
    Stephen D. Kachman
    Ronald M. Lewis
    Journal of Agricultural, Biological and Environmental Statistics, 2018, 23 : 190 - 207
  • [37] Bayesian nonparametric hierarchical modeling
    Dunson, David B.
    BIOMETRICAL JOURNAL, 2009, 51 (02) : 273 - 284
  • [38] Bayesian nonparametric modeling using mixtures of triangular distributions
    Perron, F
    Mengersen, K
    BIOMETRICS, 2001, 57 (02) : 518 - 528
  • [39] Improved probe selection for DNA arrays using nonparametric kernel density estimation
    Fu, Qi
    Borneman, James
    Ye, Jingxiao
    Chrobak, Marek
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 902 - 905
  • [40] A nonparametric Bayesian learning model using accelerated variational inference and feature selection
    Fan, Wentao
    Bouguila, Nizar
    Liu, Xin
    PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (01) : 63 - 74