Edge turbulence evolution and intermittency development near the density limit on the HL-2A tokamak

被引:12
|
作者
Wang, L. [1 ]
Tynan, G. R. [1 ,2 ]
Hong, R. [2 ]
Nie, L. [1 ]
Chen, Y. [1 ]
Ke, R. [1 ]
Wu, T. [1 ]
Long, T. [1 ]
Zheng, P. [1 ]
Xu, M. [1 ]
机构
[1] Southwestern Inst Phys, Ctr Fus Sci, Chengdu 610041, Sichuan, Peoples R China
[2] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
关键词
PLASMA; TRANSPORT; CONFINEMENT; BOUNDARY; DISRUPTIONS; ENERGY; FLOWS;
D O I
10.1063/1.5100176
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The development of intermittent non-Gaussian processes is studied in the edge turbulence of ohmically heated HL-2A discharges approaching the density limit. As the density limit is approached, the E x B shear flow at the last closed flux surface (LCFS) weakens, a strong positive skewness develops in the scrape-off layer (SOL), and negative skewness develops inside the LCFS of turbulent density fluctuations. A conditional averaging analysis confirms more frequent increased amplitude positive (negative) going density fluctuation activity in the SOL (inside the LCFS) as the density limit is approached. The measured turbulent stress across the edge, LCFS, and SOL region is decomposed into diffusive and residual stress components, and the nonlinear exchange of kinetic energy between the turbulence and the low-frequency E x B shear flow is determined. Residual stress acts to amplify the E x B flow at the LCFS, while the diffusive stress acts to dissipate the flow just inside this region, at the interface between the core plasma and the LCFS. The relative strength of the flow drive associated with the residual stress weakens as the density limit is approached, while the turbulent viscosity associated with the diffusive stress increases at high density. The adiabatic parameter, k(z)(2)v(th)(2) /omega nu(e), drops significantly to about 0.5 in the SOL when the density limit is approached, indicating a transition from the adiabatic regime to the hydrodynamic regime due to increased collisionality. Such changes enhance the particle transport through the nonadiabatic electron response and hence should result in a stronger edge cooling at fixed edge plasma heat flux.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Impurity convection reversal caused by edge localized turbulence for generating a stationary edge radiative layer in the HL-2A tokamak
    Xue, G. Q.
    Zhong, W. L.
    Wang, Z. X.
    Zou, X. L.
    Gao, J. M.
    Ke, R.
    Zheng, S.
    Zhang, X. R.
    Fan, D. M.
    Guo, W. P.
    Han, M. K.
    He, X. X.
    Jiang, M.
    Li, J. C.
    Li, Y. G.
    Liang, A. S.
    Liu, L.
    Wang, S. Q.
    Wang, T. B.
    Wen, J.
    Xiao, G. L.
    Xu, J. Q.
    Yang, Z. C.
    Yin, J.
    Yu, X.
    Zhu, Y. R.
    Shi, Z. B.
    Xu, M.
    NUCLEAR FUSION, 2024, 64 (12)
  • [22] Effects of electron cyclotron resonance heating modulation on edge turbulence driving and spreading in HL-2A tokamak
    Hu, Yingxin
    Zhao, Kaijun
    Li, Jiquan
    Yan, Longwen
    Xu, Jianqiang
    Huang, Zhihui
    Yu, Deliang
    Xie, Yaoyu
    Ding, Xiaoguan
    Wen, Siyu
    ACTA PHYSICA SINICA, 2025, 74 (05)
  • [23] Evolution of edge turbulent transport induced by L-mode detachment in the HL-2A tokamak
    Wu, Ting
    Nie, Lin
    Yu, Yi
    Gao, Jinming
    LI, Junyan
    Ma, Huicong
    Wen, Jie
    Ke, Rui
    Wu, Na
    Huang, Zhihui
    Liu, Liang
    Zheng, Dianlin
    Yi, Kaiyang
    Gao, Xiaoyan
    Wang, Weice
    Cheng, Jun
    Yan, Longwen
    Cai, Laizhong
    Wang, Zhanhui
    Xu, Min
    PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (01)
  • [24] Operation of HL-2A Tokamak
    Duan, X. R.
    Huang, Y.
    Liu, D. Q.
    Xuan, W. M.
    Chen, L. Y.
    Rao, J.
    Song, X. M.
    Cao, Z.
    Li, B.
    Cao, J. Y.
    Lei, G. J.
    Li, X. D.
    Liu, Yi
    Yang, Q. W.
    Yao, L. Y.
    Ding, X. T.
    Dong, J. Q.
    Yan, L. W.
    Pan, C. H.
    Liu, Yong
    2011 IEEE/NPSS 24TH SYMPOSIUM ON FUSION ENGINEERING (SOFE), 2011,
  • [25] Structures, wavelet and intermittency in tokamak edge turbulence
    Jha, R
    Mattoo, SK
    Saxena, YC
    PHYSICS OF PLASMAS, 1997, 4 (08) : 2982 - 2988
  • [26] Recent Progress of Optical and Spectroscopic Diagnostics for Turbulence on the HL-2A tokamak
    Yu, Y.
    Xu, M.
    Duan, X. R.
    Nie, L.
    Ke, R.
    Yuan, B. D.
    Gong, S. B.
    Lan, T.
    Wang, Z. H.
    Long, T.
    Wu, Y. F.
    Yuan, J. B.
    Wu, T.
    Chen, Y. H.
    Liu, H.
    Zhou, Y. X.
    Wang, H. J.
    Zhong, W. L.
    Shi, Z. B.
    Li, J. Q.
    Liu, Y.
    Hao, G. Z.
    Chen, W.
    Chen, Q.
    Sun, A. P.
    Ye, M. Y.
    JOURNAL OF FUSION ENERGY, 2021, 40 (01)
  • [27] Construction of the HL-2A tokamak
    Liu, DQ
    Zhou, CP
    Cao, Z
    Yan, JC
    Liu, Y
    FUSION ENGINEERING AND DESIGN, 2003, 66-68 : 147 - 151
  • [28] Recent Progress of Optical and Spectroscopic Diagnostics for Turbulence on the HL-2A tokamak
    Y. Yu
    M. Xu
    X. R. Duan
    L. Nie
    R. Ke
    B. D. Yuan
    S. B. Gong
    T. Lan
    Z. H. Wang
    T. Long
    Y. F. Wu
    J. B. Yuan
    T. Wu
    Y. H. Chen
    H. Liu
    Y. X. Zhou
    H. J. Wang
    W. L. Zhong
    Z. B. Shi
    J. Q. Li
    Y. Liu
    G. Z. Hao
    W. Chen
    Q. Chen
    A. P. Sun
    M. Y. Ye
    Journal of Fusion Energy, 2021, 40
  • [29] Evolution of edge turbulent transport induced by L-mode detachment in the HL-2A tokamak
    吴婷
    聂林
    余羿
    高金明
    李俊颜
    马会聪
    闻杰
    柯锐
    吴娜
    黄治辉
    刘亮
    郑典麟
    弋开阳
    高霄雁
    王威策
    程钧
    严龙文
    才来中
    王占辉
    许敏
    Plasma Science and Technology, 2023, 25 (01) : 14 - 23
  • [30] Development of pellet fuelling system in HL-2A tokamak
    Zhu, G. L.
    Liu, D. Q.
    Xu, H. B.
    Vinyar, I.
    Lukin, A.
    Wang, M. J.
    FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) : 2286 - 2288