Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau

被引:46
|
作者
Zhang, Si-Yi [1 ,2 ,3 ]
Li, Xiao-Yan [1 ,2 ]
Zhao, Guo-Qin [2 ]
Huang, Yong-Mei [2 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Coll Resources Sci & Technol, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
[3] Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510650, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
sensible heat flux; latent heat flux; evapotranspiration; Bowen ratio; alpine ecosystems; Qinghai Lake; WEST CHINA; BALANCE; ATMOSPHERE; EXCHANGE; MEADOW; BASIN; RATIO; HEAT; DEGRADATION; CIRCULATION;
D O I
10.1002/eco.1633
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Qinghai Lake watershed, located in the northeast of the Qinghai-Tibet Plateau, is a region that is sensitive and vulnerable to global climate change. Both the hydrological cycle and water balance in a watershed are significantly influenced by surface energy fluxes and evapotranspiration (ET); however, there is limited information related to the water and heat fluxes in this area. Using the Bowen ratio energy balance method, we measured surface energy fluxes and ET and then explored their controlling factors in three typical ecosystems of the Qinghai Lake watershed, i.e. Kobresia meadow (KMd.), Potentilla fruticosa shrub (PFSh.) and Achnatherum splendens steppe (ASSt.) between 2012 and 2013 for the first time. It was found that between the different ecosystems, there were large differences in the energy portioning. Annual sensible and latent heats accounted for 56-64% and 35-45% of net radiation, respectively. The Bowen rations were the highest in the ASSt. site and the lowest in the PFSh. site. The Bowen ratios and soil water content had negative correlations. Annual ET was 507.9, 493.2 and 413.7mm for the PFSh., KMd. and ASSt. sites, respectively. The annual ET in the KMd. and PFSh. sites was 16% and 3% less than the annual precipitation, while the ET was 26% higher than precipitation for the ASSt. site. Fluctuations in the daily ET of alpine ecosystems from the Qinghai Lake watershed were primarily controlled by radiation, especially during the growing season, whereas ET was also controlled by soil water content in the ASSt. ecosystem where precipitation was low. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 50 条
  • [31] IMPACT OF LAND USE AND LAND COVER CHANGE ON ENVIRONMENTAL DEGRADATION IN LAKE QINGHAI WATERSHED, NORTHEAST QINGHAI-TIBET PLATEAU
    Li, X. -Y.
    Ma, Y-J.
    Xu, H. -Y.
    Wang, J. -H.
    Zhang, D. -S.
    LAND DEGRADATION & DEVELOPMENT, 2009, 20 (01) : 69 - 83
  • [32] Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau
    Genxu Wang
    Yuanshou Li
    Qingbai Wu
    Yibo Wang
    Science in China Series D: Earth Sciences, 2006, 49 : 1156 - 1169
  • [33] Simulation of Soil Temperature under Plateau Zokor's (Eospalax baileyi) Disturbance in the Qinghai Lake Watershed, Northeast Qinghai-Tibet Plateau
    Xie, Ting
    Ma, Yu-Jun
    ANIMALS, 2023, 13 (17):
  • [34] Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau
    WANG Genxu1
    2. Cold and Arid Regions Environmental and Engineering Research Institute
    3. Resource and Environment School
    ScienceinChina(SeriesD:EarthSciences), 2006, (11) : 1156 - 1169
  • [35] Comparison of Soil Organic Matter Transformation Processes in Different Alpine Ecosystems in the Qinghai-Tibet Plateau
    Chen, Qiuyu
    Lei, Tianzhu
    Wu, Yingqin
    Si, Guicai
    Xi, Chuanwu
    Zhang, Gengxin
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2019, 124 (01) : 33 - 45
  • [36] Vertical distribution of radionuclides in Lake Qinghai, Qinghai-Tibet Plateau, and its environmental implications
    Wang, Qiugui
    Sha, Zhanjiang
    Wang, Jinlong
    Zhong, Qiangqiang
    Fang, Penggao
    Ma, Yujun
    Du, Jinzhou
    CHEMOSPHERE, 2020, 259
  • [37] Vegetation coverage of desert ecosystems in the Qinghai-Tibet Plateau is underestimated
    Geng, Xin
    Wang, Xunming
    Fang, Hongliang
    Ye, Jiansheng
    Han, Likun
    Gong, Yuan
    Cai, Diwen
    ECOLOGICAL INDICATORS, 2022, 137
  • [38] Major Type of Mattic-Epipedon Ruptures in Alpine Meadow Ecosystems on the Qinghai-Tibet Plateau
    Guan, De-Yang
    Cao, Xiao-Dong
    Cheng, Yu-Hang
    Wang, Qiu-Bing
    Li, Hua-Lei
    Wang, Yun-Zhi
    Jiang, Zhuo-Dong
    Sun, Fu-Jun
    ECOSYSTEM HEALTH AND SUSTAINABILITY, 2023, 9
  • [39] Effects of freeze-thaw cycles on soil macropores and its implications on formation of hummocks in alpine meadows in the Qinghai Lake watershed, northeastern Qinghai-Tibet Plateau
    Zhou Gao
    Xia Hu
    Xiao-Yan Li
    Zong-Chao Li
    Journal of Soils and Sediments, 2021, 21 : 245 - 256
  • [40] Effects of freeze-thaw cycles on soil macropores and its implications on formation of hummocks in alpine meadows in the Qinghai Lake watershed, northeastern Qinghai-Tibet Plateau
    Gao, Zhou
    Hu, Xia
    Li, Xiao-Yan
    Li, Zong-Chao
    JOURNAL OF SOILS AND SEDIMENTS, 2021, 21 (01) : 245 - 256