Reverse converters for a new moduli set {22n-1, 2n, 22n+1}

被引:5
|
作者
Mohan, P. V. Ananda [1 ]
机构
[1] Elect Corp India Ltd, Bangalore 560052, Karnataka, India
关键词
RNS; VLSI design; digital signal processors; reverse converters; powers of two-related moduli set;
D O I
10.1007/s00034-006-0219-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new moduli set {2(2n) - 1, 2(n), 2(2n) + 1) derived from a recently proposed four moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n) + 1) is considered, in this paper. The problem of reverse conversion has been considered, and it is shown that the proposed moduli set needs less reverse conversion time and area requirements than the converter for the four moduli set [2n - 1, 2n, 2n + 1, 22n + 11 from which it is derived. The proposed moduli set is also compared with two other well-known three moduli sets {2(k) - 1, 2(k), 2(k) + 1} and {2(n) - 1, 2(n), 2(n) - 1, 2(2n) for realizing the same dynamic range regarding the area and conversion times of the residue number system (RNS)-to-binary converters. Key words: RNS, VLSI design, digital signal processors, reverse converters, powers of two-related moduli set.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [41] An Efficient VLSI Design of Residue to Binary Converter Circuit for a New Moduli Set {22n, 22n-1-1, 22n-1+1}
    Bankas, Edem Kwedzo
    Gbolagade, Kazeem Alagbe
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUITS AND MICROSYSTEMS (ICICM 2019), 2019, : 24 - 28
  • [42] Memoryless RNS-to-Binary Converters for the {2n+1-1, 2n, 2n-1} Moduli Set
    Gbolagade, Kazeem Alagbe
    Voicu, George Razvan
    Cotofana, Sorin Dan
    21ST IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, 2010,
  • [43] Area-efficient and Fast Sign Detection for Four-Moduli Set RNS {2n -,2n,2n+1,22n+1}
    Chang, Chip-Hong
    Kumar, Sachin
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 1540 - 1543
  • [44] Efficient RNS to binary converters for the new 4-moduli set {2n, 2n+1-1, 2n-1, 2n-1-1}
    Esmaeildoust, Mohammad
    Navi, Keivan
    Taheri, MohammadReza
    Molahosseini, Amir Sabbagh
    Khodambashi, Siavash
    IEICE ELECTRONICS EXPRESS, 2012, 9 (01): : 1 - 7
  • [45] An Efficient Reverse Converter for the Three-Moduli Set (2n+1-1, 2n, 2n-1)
    Hiasat, Ahmad
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (08) : 962 - 966
  • [46] Efficient MRC-Based Residue to Binary Converters for the New Moduli Sets {22n, 2n-1, 2n+1-1} and {22n, 2n-1, 2n-1-1}
    Molahosseini, Amir Sabbagh
    Dadkhah, Chitra
    Navi, Keivan
    Eshghi, Mohammad
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (09): : 1628 - 1638
  • [47] High-speed and low-cost reverse converters for the (2n-1,2n,2n+1) moduli set
    Premkumar, AB
    Bhardwaj, M
    Srikanthan, T
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (07): : 903 - 908
  • [48] Design of Reverse Converters for a New Flexible RNS Five-Moduli Set {2k, 2n - 1, 2n + 1, 2n+1 - 1, 2n-1 - 1} (n Even) (vol 36, pg 4593, 2017)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 5197 - 5197
  • [49] New efficient residue-to-binary converters for 4-moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Cao, B
    Chang, CH
    Srikanthan, T
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 536 - 539
  • [50] An Efficient 2n RNS Scaler for Moduli Set {2n-1, 2n, 2n+1}
    Ye, Yanlong
    Ma, Shang
    Hu, Jianhao
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 511 - 515