INFINITE NUMBER OF LOOKS PREDICTION IN POLSAR FILTERING BY LINEAR REGRESSION

被引:1
|
作者
Yahia, Mohamed [1 ,2 ]
Ali, Tarig [1 ,3 ]
Mortula, Maruf [3 ]
Abdelfattah, Riadh [4 ,5 ]
Elmandy, Samy [1 ]
机构
[1] Amer Univ Sharjah UAE, GIS & Mapping Lab, Sharjah, U Arab Emirates
[2] Univ Gabes Tunisia, Ecole Natl Ingenieurs Gabes ENIG, Lab Rech Modelisat Anal & Commande Syst MACS, Gabes, Tunisia
[3] Amer Univ Sharjah UAE, Civil Engn Dept, Sharjah, U Arab Emirates
[4] Univ Carthage, COSIM Lab, Higher Sch Commun Tunis, Tunis, Tunisia
[5] Telecom Bretagne, ITI Dept, Telecom Inst, Brest, France
关键词
Linear regression; MMSE filter; prediction; PoISAR; speckle filtering; POLARIMETRIC SAR IMAGERY; SPECKLE REDUCTION; NONLOCAL MEANS; MODEL; PARAMETERS;
D O I
10.1109/IGARSS39084.2020.9323632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the application of the synthetic aperture radar (SAR) infinite number of looks prediction (INLP) filter is extended to polarimetric SAR (PoISAR) speckle filtering. The scalar linear regression rule has been adapted to PoISAR context in order to preserve the polarimetric information. Experimental results using simulated and airborne PoISAR data show that the proposed approach improved the polarimetric filtering criteria.
引用
收藏
页码:1327 / 1330
页数:4
相关论文
共 50 条
  • [41] On linear regression models in infinite dimensional spaces with scalar response
    Ghiglietti, Andrea
    Ieva, Francesca
    Paganoni, Anna Maria
    Aletti, Giacomo
    STATISTICAL PAPERS, 2017, 58 (02) : 527 - 548
  • [42] Filtering the eigenvalues at infinite from the linear stability analysis of incompressible flows
    Valerio, J. V.
    Carvalho, M. S.
    Tomei, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) : 229 - 243
  • [43] LINEAR REGRESSION MODELS FOR DCT DOMAIN APPROXIMATE FILTERING AND DEBLURRING
    Hu, Wei
    Zheng, Nanning
    Xue, Jianru
    Lan, Xuguang
    Xu, Tao
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 805 - 808
  • [44] Performance Evaluation of Distributed Linear Regression Kalman Filtering Fusion
    Yang, Xusheng
    Zhang, Wen-An
    Yu, Li
    Shi, Ling
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) : 2889 - 2896
  • [45] Linear Regression Kalman Filtering Based on Hyperspherical Deterministic Sampling
    Kurz, Gerhard
    Hanebeck, Uwe D.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [46] Linear regression and filtering under nonstandard assumptions (arbitrary noise)
    Granichin, O
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (10) : 1830 - 1835
  • [47] Prediction of infinite-dilution activity coefficients with neural collaborative filtering
    Tan, Tian
    Cheng, Hongye
    Chen, Guzhong
    Song, Zhen
    Qi, Zhiwen
    AICHE JOURNAL, 2022, 68 (09)
  • [48] Stability of a Class of Switched Linear Systems with Infinite Number of Subsystems
    Araghi, L. F.
    Suratgar, A. A.
    Feizi, E.
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2013, 15 (03): : 38 - 44
  • [49] REFINED PREDICTION FOR LINEAR-REGRESSION MODELS
    HESS, JL
    GUNST, RF
    NAVAL RESEARCH LOGISTICS, 1978, 25 (04) : 715 - 725
  • [50] Improved linear regression prediction by transfer learning
    Obst, David
    Ghattas, Badih
    Claudel, Sandra
    Cugliari, Jairo
    Goude, Yannig
    Oppenheim, Georges
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174