A Jackknifed estimators for the negative binomial regression model

被引:8
|
作者
Turkan, Semra [1 ]
Ozel, Gamze [1 ]
机构
[1] Hacettepe Univ, Dept Stat, Ankara, Turkey
关键词
Jackknifed estimators; Maximum likelihood; MSE; Negative binomial regression; Ridge regression; Simulation; RIDGE-REGRESSION;
D O I
10.1080/03610918.2017.1327069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators for estimating the ridge parameter k in the negative binomial (NB) regression have been proposed. The Jackknifed estimators are obtained to remedy the multicollinearity and reduce the bias. A simulation study is provided to evaluate the performance of estimators. Both mean squared error (MSE) and the percentage relative error (PRE) are considered as the performance criteria. The simulated result indicated that some of proposed Jackknifed estimators should be preferred to the ML method and ridge estimators to reduce MSE and bias.
引用
收藏
页码:1845 / 1865
页数:21
相关论文
共 50 条
  • [41] Analyzing wildfire threat counts using a negative binomial regression model
    Quintanilha, J. A.
    Ho, L. L.
    ENVIRONMETRICS, 2006, 17 (06) : 529 - 538
  • [42] BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO NEGATIVE BINOMIAL DISTRIBUTION
    SHENTON, LR
    WALLINGTON, PA
    BIOMETRIKA, 1962, 49 (1-2) : 193 - &
  • [43] Jackknifed Liu-type Estimator in Poisson Regression Model
    Alkhateeb, Ahmed Naziyah
    Algamal, Zakariya Yahya
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2020, 19 (01): : 21 - 37
  • [44] On a new class of binomial ridge-type regression estimators
    Abdel-Fattah, Mahmoud A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (06) : 3272 - 3290
  • [45] Bayesian ridge estimators based on a vine copula-based prior in Poisson and negative binomial regression models
    Michimae, Hirofumi
    Emura, Takeshi
    Furukawa, Kyoji
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (18) : 3979 - 4000
  • [46] A jackknifed ridge estimator in the linear regression model with heteroscedastic or correlated errors
    Oezkale, M. Revan
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (18) : 3159 - 3169
  • [47] Modelling the claim count with Poisson regression and negative binomial regression
    Bartoszewicz, B
    INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 103 - 110
  • [48] Negative Binomial regression model for analysis of the relationship between hospitalization and air pollution
    Ardiles, Leda G.
    Tadano, Yara S.
    Costa, Silvano
    Urbina, Viviana
    Capucim, Mauricio N.
    da Silva, Iara
    Braga, Alfesio
    Martins, Jorge A.
    Martins, Leila D.
    ATMOSPHERIC POLLUTION RESEARCH, 2018, 9 (02) : 333 - 341
  • [49] Statistical Analysis of Injury and Nonconformance Frequencies in Construction: Negative Binomial Regression Model
    Love, Peter E. D.
    Teo, Pauline
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2017, 143 (08)
  • [50] OVERDISPERSED NEGATIVE BINOMIAL REGRESSION-MODELS
    XUE, DX
    DEDDENS, JA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (08) : 2215 - 2226