Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo

被引:0
|
作者
Owen, AB [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper surveys recent research on using Monte Carlo techniques to improve quasi-Monte Carlo techniques. Randomized quasi-Monte Carlo methods provide a basis for error estimation. They have, in the special case of scrambled nets, also been observed to improve accuracy. Finally through Latin supercube sampling it is possible to use Monte Carlo methods to ex-tend quasi-Monte Carlo methods to higher dimensional problems.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 50 条
  • [11] Langevin Quasi-Monte Carlo
    Liu, Sifan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [12] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    SIAM REVIEW, 1968, 10 (03) : 303 - &
  • [13] On quasi-Monte Carlo integrations
    Sobol, IM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 103 - 112
  • [14] Monte Carlo and quasi-Monte Carlo methods for computer graphics
    Shirley, Peter
    Edwards, Dave
    Boulos, Solomon
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 167 - 177
  • [15] A review of Monte Carlo and quasi-Monte Carlo sampling techniques
    Hung, Ying-Chao
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)
  • [16] RANDOMIZED QUASI-MONTE CARLO FOR QUANTILE ESTIMATION
    Kaplan, Zachary T.
    Li, Yajuan
    Nakayama, Marvin K.
    Tuffin, Bruno
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 428 - 439
  • [17] Density Estimation by Randomized Quasi-Monte Carlo
    Abdellah, Amal Ben
    L'Ecuyer, Pierre
    Owen, Art B.
    Puchhammer, Florian
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01): : 280 - 301
  • [18] QUANTILE ESTIMATION VIA A COMBINATION OF CONDITIONAL MONTE CARLO AND RANDOMIZED QUASI-MONTE CARLO
    Nakayama, Marvin K.
    Kaplan, Zachary T.
    Li, Yajuan
    Tuffin, Bruno
    L'Ecuyer, Pierre
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 301 - 312
  • [19] Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM
    Jank, W
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (04) : 685 - 701
  • [20] Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning
    L'Ecuyer, Pierre
    Puchhammer, Florian
    Ben Abdellah, Amal
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1729 - 1748