Matrix completion and tensor rank

被引:3
|
作者
Derksen, Harm [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 04期
基金
美国国家科学基金会;
关键词
tensor rank; matrix completion;
D O I
10.1080/03081087.2015.1083565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the low rank matrix completion problem can be reduced to the problem of finding the rank of a certain tensor.
引用
收藏
页码:680 / 685
页数:6
相关论文
共 50 条
  • [11] Imbalanced low-rank tensor completion via latent matrix factorization
    Qiu, Yuning
    Zhou, Guoxu
    Zeng, Junhua
    Zhao, Qibin
    Xie, Shengli
    NEURAL NETWORKS, 2022, 155 : 369 - 382
  • [12] Tensor completion using total variation and low-rank matrix factorization
    Ji, Teng-Yu
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ma, Tian-Hui
    Liu, Gang
    INFORMATION SCIENCES, 2016, 326 : 243 - 257
  • [13] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [14] Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization
    Shi, Chengfei
    Huang, Zhengdong
    Wan, Li
    Xiong, Tifan
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1888 - 1912
  • [15] Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization
    Chengfei Shi
    Zhengdong Huang
    Li Wan
    Tifan Xiong
    Journal of Scientific Computing, 2019, 80 : 1888 - 1912
  • [16] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [17] Maximum rank matrix completion
    Geelen, JF
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 288 (1-3) : 211 - 217
  • [18] A Rank-One Tensor Updating Algorithm for Tensor Completion
    Yang, Yuning
    Feng, Yunlong
    Suykens, Johan A. K.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1633 - 1637
  • [19] A non-convex tensor rank approximation for tensor completion
    Ji, Teng-Yu
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ma, Tian-Hui
    Deng, Liang-Jian
    APPLIED MATHEMATICAL MODELLING, 2017, 48 : 410 - 422
  • [20] A tensor network low rank completion method
    Bentbib, Abdeslem Hafid
    Jbilou, Khalide
    Khobizy, Sanaa
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):