Spatial charting of single-cell transcriptomes in tissues

被引:104
|
作者
Wei, Runmin [1 ]
He, Siyuan [1 ,2 ]
Bai, Shanshan [1 ]
Sei, Emi [1 ]
Hu, Min [1 ]
Thompson, Alastair [3 ]
Chen, Ken [4 ]
Krishnamurthy, Savitri [5 ]
Navin, Nicholas E. [1 ,2 ,4 ]
机构
[1] UT MD Anderson Canc Ctr, Dept Genet, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Grad Sch Biomed Sci, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Surg, Houston, TX 77030 USA
[4] UT MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[5] UT MD Anderson Canc Ctr, Dept Pathol, Houston, TX USA
关键词
INTRATUMOR HETEROGENEITY; EXPRESSION; DIVERSITY; BREAST;
D O I
10.1038/s41587-022-01233-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA sequencing methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics assays can profile spatial regions in tissue sections, but do not have single-cell resolution. Here, we developed a computational method called CellTrek that combines these two datasets to achieve single-cell spatial mapping through coembedding and metric learning approaches. We benchmarked CellTrek using simulation and in situ hybridization datasets, which demonstrated its accuracy and robustness. We then applied CellTrek to existing mouse brain and kidney datasets and showed that CellTrek can detect topological patterns of different cell types and cell states. We performed single-cell RNA sequencing and spatial transcriptomics experiments on two ductal carcinoma in situ tissues and applied CellTrek to identify tumor subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data show that CellTrek can accurately map single cells in diverse tissue types to resolve their spatial organization.
引用
收藏
页码:1190 / +
页数:15
相关论文
共 50 条
  • [41] Single-cell spatial sequencing
    Ornob Alam
    Nature Genetics, 2021, 53 : 1119 - 1119
  • [42] Single-cell spatial sequencing
    Alam, Ornob
    NATURE GENETICS, 2021, 53 (08) : 1119 - 1119
  • [43] Integration and transfer learning of single-cell transcriptomes via cFIT
    Peng, Minshi
    Li, Yue
    Wamsley, Brie
    Wei, Yuting
    Roeder, Kathryn
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [44] siVAE: interpretable deep generative models for single-cell transcriptomes
    Choi, Yongin
    Li, Ruoxin
    Quon, Gerald
    GENOME BIOLOGY, 2023, 24 (01)
  • [45] Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq
    Philpott, Martin
    Watson, Jonathan
    Thakurta, Anjan
    Brown, Tom, Jr.
    Brown, Tom, Sr.
    Oppermann, Udo
    Cribbs, Adam P.
    NATURE BIOTECHNOLOGY, 2021, 39 (12) : 1517 - +
  • [46] siVAE: interpretable deep generative models for single-cell transcriptomes
    Yongin Choi
    Ruoxin Li
    Gerald Quon
    Genome Biology, 24
  • [47] Efficient integration of heterogeneous single-cell transcriptomes using Scanorama
    Hie, Brian
    Bryson, Bryan
    Berger, Bonnie
    NATURE BIOTECHNOLOGY, 2019, 37 (06) : 685 - +
  • [48] Single-cell transcriptomes reveal the heterogeneity and microenvironment of vestibular schwannoma
    Huo, Zirong
    Wang, Zhaohui
    Luo, Huahong
    Maimaitiming, Dilihumaer
    Yang, Tao
    Liu, Huihui
    Li, Huipeng
    Wu, Hao
    Zhang, Zhihua
    NEURO-ONCOLOGY, 2024, 26 (03) : 444 - 457
  • [49] Single-cell transcriptomes in the heart: when every epigenome counts
    Gromova, Tatiana
    Gehred, Natalie D.
    Vondriska, Thomas M.
    CARDIOVASCULAR RESEARCH, 2023, 119 (01) : 64 - 78
  • [50] Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq
    Martin Philpott
    Jonathan Watson
    Anjan Thakurta
    Tom Brown
    Tom Brown
    Udo Oppermann
    Adam P. Cribbs
    Nature Biotechnology, 2021, 39 : 1517 - 1520