Inference and parameter estimation on hierarchical belief networks for image segmentation

被引:5
|
作者
Wolf, Christian [1 ,3 ]
Gavin, Gerald [1 ,2 ]
机构
[1] Univ Lyon, CNRS, Lyon, France
[2] Univ Lyon 1, ERIC, F-69622 Villeurbanne, France
[3] INSA, LIRIS, UMR5205, F-69621 Villeurbanne, France
关键词
Belief networks; Image segmentation; Graph cuts; MARKOV RANDOM-FIELD; ENERGY MINIMIZATION; GRAPH CUTS; CLASSIFICATION; MODEL; DOCUMENTS; ALGORITHM;
D O I
10.1016/j.neucom.2009.07.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new causal hierarchical belief network for image segmentation. Contrary to classical tree structured (or pyramidal) models, the factor graph of the network contains cycles. Each level of the hierarchical structure features the same number of sites as the base level and each site on a given level has several neighbors on the parent level. Compared to tree structured models, the (spatial) random process on the base level of the model is stationary which avoids known drawbacks, namely visual artifacts in the segmented image. We propose different parameterizations of the conditional probability distributions governing the transitions between the image levels. A parametric distribution depending on a single parameter allows the design of a fast inference algorithm on graph cuts, whereas for arbitrary distributions, we propose inference with loopy belief propagation. The method is evaluated on scanned documents, showing an improvement of character recognition results compared to other methods. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 50 条
  • [31] Hierarchical regions for image segmentation
    Wesolkowski, S
    Fieguth, P
    IMAGE ANALYSIS AND RECOGNITION, PT 1, PROCEEDINGS, 2004, 3211 : 9 - 16
  • [32] A CONTRARIO HIERARCHICAL IMAGE SEGMENTATION
    Cardelino, Juan
    Caselles, Vicent
    Bertalmio, Marcelo
    Randall, Gregory
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 4041 - +
  • [33] A hierarchical segmentation for image processing
    de Jesus Zarrazola, Edwing
    Gomez, Daniel
    Montero, Javier
    Yanez, Javier
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [34] On hierarchical segmentation for image compression
    Biswas, S
    Pal, NR
    PATTERN RECOGNITION LETTERS, 2000, 21 (02) : 131 - 144
  • [35] A hierarchical image segmentation algorithm
    Yu, W
    Fritts, J
    Sun, FT
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : A221 - A224
  • [36] Hierarchical Multiscale Image Segmentation
    Silva, Karinne S.
    Lima, Gilson G.
    Medeiros, Fatima N. S.
    PROCEEDINGS OF THE IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 2006, : 749 - 753
  • [37] ON PARAMETER ESTIMATION IN HIERARCHICAL CREDIBILITY
    Belhadj, Hassine
    Goulet, Vincent
    Ouellet, Tommy
    ASTIN BULLETIN, 2009, 39 (02): : 495 - 514
  • [38] Bayesian Inference: Parameter Estimation for Inference in Small Samples
    Baig, Sabeeh A.
    NICOTINE & TOBACCO RESEARCH, 2022, 24 (06) : 937 - 941
  • [39] Causal Belief Inference in Multiply Connected Networks
    Boussarsar, Oumaima
    Boukhris, Imen
    Elouedi, Zied
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, IPMU 2016, PT II, 2016, 611 : 291 - 302
  • [40] Neural Variational Inference and Learning in Belief Networks
    Mnih, Andriy
    Gregor, Karol
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1791 - 1799