Spanning Trees of the Generalised Union Jack Lattice

被引:1
|
作者
Chen, Lingyun [1 ]
Yan, Weigen [1 ]
机构
[1] Jimei Univ, Sch Sci, 183 Yingjiang Rd, Xiamen 361021, Fujian, Peoples R China
关键词
Aztec Diamond; Generalised Union Jack Lattice; Spanning Tree; Union Jack Lattice; AZTEC DIAMONDS; GRAPHICAL CONDENSATION; MATCHINGS; THEOREM; PROOF;
D O I
10.1515/zna-2015-0415
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Union Jack lattice UJL(n, m) with toroidal boundary condition can be obtained from an n x m square lattice with toroidal boundary condition by inserting a new vertex v(f) to each face f and adding four edges (v(f), u(i)(f)), where u(1)(f), u(2)(f), u(3)(f), and u(4)(f) are four vertices on the boundary of f. The Union Jack lattice has been studied extensively by statistical physicists. In this article, we consider the problem of enumeration of spanning trees of the so-called generalised Union Jack lattice UDn, which is obtained from the Aztec diamond AD(n)(t) of order n with toroidal boundary condition by inserting a new vertex v(f) to each face f and adding four edges (v(f), u(i)(f)), where u(1)(f), u(2)(f), u(3)(f) and u(4)(f) are four vertices on the boundary of f.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 50 条
  • [31] Packing spanning trees
    1600, Inst of Management Sciences, Providence, RI, USA (20):
  • [32] On Polynomials of Spanning Trees
    F. Chung
    C. Yang
    Annals of Combinatorics, 2000, 4 (1) : 13 - 25
  • [33] Generalized spanning trees
    Dror, M
    Haouari, M
    Chaouachi, J
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 120 (03) : 583 - 592
  • [34] Minimal spanning trees
    Schmerl, JH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 333 - 340
  • [35] On encodings of spanning trees
    Hurlbert, Glenn H.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2594 - 2600
  • [36] PROBLEM ON SPANNING TREES
    TUTTE, WT
    QUARTERLY JOURNAL OF MATHEMATICS, 1974, 25 (98): : 253 - 255
  • [37] Variations for spanning trees
    Zsako, Laszlo
    ANNALES MATHEMATICAE ET INFORMATICAE, 2006, 33 : 151 - 165
  • [38] Spanning Trees and Hamiltonicity
    Byers, Alexis
    Olejniczak, Drake
    Zayed, Mohra
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 110 : 61 - 71
  • [39] POPULAR SPANNING TREES
    Darmann, Andreas
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2013, 24 (05) : 655 - 677
  • [40] GENERATOR OF SPANNING TREES
    MCILROY, MD
    COMMUNICATIONS OF THE ACM, 1969, 12 (09) : 511 - &