Recursive Best-First AND/OR Search for Optimization in Graphical Models

被引:0
|
作者
Kishimoto, Akihiro [1 ]
Marinescu, Radu [1 ]
机构
[1] IBM Res, Dublin, Ireland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper presents and evaluates the power of limited memory best-first search over AND/OR spaces for optimization tasks in graphical models. We propose Recursive Best-First AND/OR Search with Overestimation (RBFAOO), a new algorithm that explores the search space in a best-first manner while operating with restricted memory. We enhance RBFAOO with a simple overestimation technique aimed at minimizing the overhead associated with re-expanding internal nodes and prove correctness and completeness of RBFAOO. Our experiments show that RBFAOO is often superior to the current state-of-the-art approaches based on AND/OR search, especially on very hard problem instances.
引用
收藏
页码:400 / 409
页数:10
相关论文
共 50 条
  • [11] Best-first minimax search: Othello results
    Korf, Richard E.
    Chickering, David Maxwell
    Proceedings of the National Conference on Artificial Intelligence, 1994, 2 : 1365 - 1370
  • [12] Best-First Heuristic Search for Multicore Machines
    Burns, Ethan
    Lemons, Sofia
    Ruml, Wheeler
    Zhou, Rong
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2010, 39 : 689 - 743
  • [13] Effective Heuristics for Suboptimal Best-First Search
    Wilt, Christopher
    Ruml, Wheeler
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2016, 57 : 273 - 306
  • [14] A solution to the GHI problem for best-first search
    Breuker, DM
    van den Herik, HJ
    Uiterwijk, JWHM
    Allis, LV
    THEORETICAL COMPUTER SCIENCE, 2001, 252 (1-2) : 121 - 149
  • [15] A solution to the GHI problem for best-first search
    Breuker, DM
    van den Herik, HJ
    Uiterwijk, JWHM
    Allis, LV
    COMPUTERS AND GAMES, 1999, 1558 : 25 - 49
  • [16] Parallel randomized Best-First Minimax Search
    Shoham, Y
    Toledo, S
    ARTIFICIAL INTELLIGENCE, 2002, 137 (1-2) : 165 - 196
  • [17] Best-first Utility-guided Search
    Ruml, Wheeler
    Do, Minh B.
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2378 - 2384
  • [18] Using Lookaheads with Optimal Best-First Search
    Stern, Roni
    Kulberis, Tamar
    Felner, Ariel
    Holte, Robert
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 185 - 190
  • [19] Subproblem ordering heuristics for AND/OR best-first search
    Lam, William
    Kask, Kalev
    Larrosa, Javier
    Dechter, Rina
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 94 : 41 - 62
  • [20] A framework for quasi-exact optimization using relaxed best-first search
    Ebendt, Ruediger
    Drechsler, Rolf
    KI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4314 : 331 - +