Nanoimprinted DWDM laser arrays on indium phosphide substrates

被引:3
|
作者
Smistrup, Kristian [1 ]
Norregaard, Jesper [1 ]
Mironov, Andrej [1 ]
Bro, Tobias H. [1 ]
Bilenberg, Brian [1 ]
Nielsen, Theodor [1 ]
Eriksen, Johan [2 ]
Thilsted, Anil H. [2 ]
Hansen, Ole [2 ]
Kristensen, Anders [2 ]
Rishton, Stephen [3 ]
Khan, Ferdous [3 ]
Emanuel, Mark [3 ]
Ma, Yong [3 ]
Zhang, Yin [3 ]
机构
[1] NIL Technol ApS, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, DTU Nanotech, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[3] NeoPhoton Corp, Fremont, CA 94538 USA
基金
新加坡国家研究基金会;
关键词
Nanoimprint lithography; Process integration; Distributed feedback lasers; DFB; Dense wavelength division multiplexing; D-WDM; DFB ARRAY; LITHOGRAPHY; FABRICATION; GRATINGS;
D O I
10.1016/j.mee.2014.07.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dense wavelength division multiplexing lasers play a major role in today's long-haul broadband communication. Typical distributed feedback laser cavities consist of long half-pitch gratings in InGaAsP on InP substrates with grating periods of around 240 nm. The lasers include a quarter wavelength shift in the grating, and are single mode with high side-mode suppression. Typically, such lasers are patterned using e-beam lithography (EBL). We present a fabrication method based on patterning by thermal nanoimprint lithography, which is potentially less costly and faster than EBL. Thermal nanoimprint lithography of laser gratings raises two types of challenges: (1) The imprint process itself is delicate due to the mechanical fragility of indium phosphide substrates and the thermal mismatch between the substrate and the silicon stamp. (2) The subsequent processing puts requirements on the imprint resist thickness after patterning, and the alignment between the crystallographic direction of the substrate and the grating pattern. Working laser arrays were produced, with >40 mW optical power and side mode suppression ratios of more than 50 dB in all 12 channels. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 153
页数:5
相关论文
共 50 条
  • [1] Planar refractive microlens arrays in indium phosphide and quartz substrates
    Zhang, Xinyu
    Xie, Changsheng
    Ji, An
    Tang, Qingle
    Luo, Wei
    OPTICAL ENGINEERING, 2008, 47 (05)
  • [2] INDIUM PHOSPHIDE LASER CHARACTERISTICS
    WEISER, K
    LEVITT, RS
    BURNS, G
    WOODALL, J
    NATHAN, MI
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1964, 230 (02): : 271 - &
  • [3] Preparation of Indium Phosphide Substrates for Epilayer Growth
    Vasil'ev, M. G.
    Vasil'ev, A. M.
    Izotov, A. D.
    Shelyakin, A. A.
    INORGANIC MATERIALS, 2018, 54 (11) : 1109 - 1112
  • [4] Preparation of Indium Phosphide Substrates for Epilayer Growth
    M. G. Vasil’ev
    A. M. Vasil’ev
    A. D. Izotov
    A. A. Shelyakin
    Inorganic Materials, 2018, 54 : 1109 - 1112
  • [5] INDIUM-PHOSPHIDE FILMS ON FOREIGN SUBSTRATES
    CHU, TL
    CHU, SS
    LIN, CL
    TZENG, YC
    KUPER, AB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (08) : C371 - C371
  • [6] X-Ray characterisation of indium phosphide substrates
    Moore, CD
    Tanner, BK
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 66 (1-3): : 11 - 14
  • [7] X-ray characterization of indium phosphide substrates
    Moore, C.D.
    Tanner, B.K.
    Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 66 (01): : 11 - 14
  • [8] Femtosecond laser micromachining of grooves in indium phosphide
    A. Borowiec
    H.K. Haugen
    Applied Physics A, 2004, 79 : 521 - 529
  • [9] Femtosecond laser micromachining of grooves in indium phosphide
    Borowiec, A
    Haugen, HK
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (03): : 521 - 529
  • [10] Perspective for large semi-insulating indium phosphide substrates
    Ware, R
    2001 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2001, : 121 - 124