Existence of ground state sign-changing solutions for a class of generalized quasilinear Schrodinger-Maxwell system in R3
被引:6
|
作者:
Chen, Jianhua
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Chen, Jianhua
[1
]
Tang, Xianhua
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Tang, Xianhua
[1
]
Cheng, Bitao
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Qujing Normal Univ, Sch Math & Stat, Qujing 655011, Yunnan, Peoples R ChinaCent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Cheng, Bitao
[1
,2
]
机构:
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Qujing Normal Univ, Sch Math & Stat, Qujing 655011, Yunnan, Peoples R China
In this paper, we study the existence of ground state sign-changing solutions for the following generalized quasilinear Schrodinger-Maxwell system {-div(g(2)(u)del u) + g(u)g'(u)vertical bar del u(2)vertical bar + V(x)u + mu phi G(u)g(u)=K(x)f(u), x is an element of R-3, -Delta phi= G(2)(u), x is an element of R-3, where g is an element of C-1 (R, R+), V(x) and K(x) are positive continuous functions and mu is a positive parameter. By making a change of variable as u = G(-1)(v) and G(u) = integral(u)(0) g(t)dt, we obtain one ground state sign-changing solution v mu = G(-1)(u(mu)) by using some new analytical skills and non-Nehari manifold method. Furthermore, the energy of v(mu) = G(-1)(u(mu)) is strictly larger than twice that of the ground state solutions of Nehari-type. We also establish the convergence property of v(mu) = G(-1)(u(mu)) as the parameter mu SE arrow 0. Our results improve and generalize some results obtained by Chen and Tang (2016), Zhu et al. (2016). (C) 2017 Elsevier Ltd. All rights reserved.
机构:
Univ Shanghai Sci & Technol, Business Sch, Shanghai, Peoples R China
Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou, Peoples R ChinaUniv Shanghai Sci & Technol, Business Sch, Shanghai, Peoples R China
机构:
East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
Qingdao Univ Technol, Feixian 273400, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
Li, Qi
Du, Xinsheng
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
Du, Xinsheng
Zhao, Zengqin
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China