SOLVABLE SYSTEMS OF ISOCHRONOUS, MULTI-PERIODIC OR ASYMPTOTICALLY ISOCHRONOUS NONLINEAR OSCILLATORS

被引:4
|
作者
Calogero, F. [1 ,2 ]
Leyvraz, F. [3 ,4 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy
[3] Ctr Int Ciencias, Cuernavaca, Morelos, Mexico
[4] Univ Los Andes, Dept Fis, Bogota, Colombia
关键词
Nonlinear oscillators; isochronous; multi-periodic; asymptotically isochronous; matrix ODEs;
D O I
10.1142/S1402925110000623
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple technique is identified to manufacture solvable nonlinear dynamical systems, and in particular three classes whose generic solutions are, respectively, isochronous, multi-periodic, or asymptotically isochronous.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 50 条
  • [21] A Result on the Quasi-periodic Solutions of Forced Isochronous Oscillators at Resonance
    Liu, Bin
    Tang, Yingchao
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (04) : 523 - 542
  • [22] Periodic solutions of perturbed isochronous hamiltonian systems at resonance
    Fabry, C
    Fonda, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (02) : 299 - 325
  • [23] Isochronous Liénard-type nonlinear oscillators of arbitrary dimensions
    AJEY K TIWARI
    A DURGA DEVI
    R GLADWIN PRADEEP
    V K CHANDRASEKAR
    Pramana, 2015, 85 : 789 - 805
  • [24] Isochronous Li,nard-type nonlinear oscillators of arbitrary dimensions
    Tiwari, Ajey K.
    Devi, A. Durga
    Pradeep, R. Gladwin
    Chandrasekar, V. K.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (05): : 789 - 805
  • [25] PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS COUPLING TWIST WITH AN ISOCHRONOUS CENTER
    Fonda, Alessandro
    Ullah, Wahid
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2024, 37 (05) : 323 - 336
  • [26] Non-periodic isochronous oscillations in plane differential systems
    M. Sabatini
    Annali di Matematica Pura ed Applicata, 2003, 182 (4) : 487 - 501
  • [27] Lyapunov analysis for nonlinear systems in MIMO multi-periodic repetitive control systems
    Owens, DH
    Tomas-Rodrígues, M
    Hätönen, JJ
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, : 348 - 353
  • [28] UNBOUNDED SOLUTIONS AND PERIODIC SOLUTIONS OF PERTURBED ISOCHRONOUS HAMILTONIAN SYSTEMS AT RESONANCE
    Capietto, Anna
    Dambrosio, Walter
    Ma, Tiantian
    Wang, Zaihong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (05) : 1835 - 1856
  • [29] Isochronous n-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability
    Omar Mustafa
    The European Physical Journal Plus, 136
  • [30] Isochronous n-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability
    Mustafa, Omar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02):