Soft Measure of Visual Token Occurrences for Object Categorization

被引:0
|
作者
Wang, Yanjie [1 ]
Liu, Xiabi [1 ]
Jia, Yunde [1 ]
机构
[1] Beijing Inst Technol, Beijing Lab Intelligent Informat Technol, Sch Comp Sci, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The improvement of bag-of-features image representation by statistical modeling of visual tokens has recently gained attention in the field of object categorization. This paper proposes a soft bag-of-features image representation based on Gaussian Mixture Modeling (GMM) of visual tokens for object categorization. The distribution of local features from each visual token is assumed as the CLAIM and learned from the training data by the Expectation-Maximization algorithm with a model selection method based on the Minimum Description Length. Consequently, we can employ Bayesian formula to compute posterior probabilities of being visual tokens for local features. According to these probabilities, three schemes of image representation are defined and compared for object categorization under a new discriminative learning framework of Bayesian classifiers; the Max-Min posterior Pseudo-probabilities (MMP). We evaluate the effectiveness of the proposed object categorization approach oil the Caltech-4 database and car side images from the University of Illinois. The experimental results with comparisons to those reported in other related work show that our approach is promising.
引用
收藏
页码:774 / 782
页数:9
相关论文
共 50 条
  • [31] Visual discrimination and object categorization in the cichlid Pseudotropheus sp.
    Schluessel, V.
    Fricke, G.
    Bleckmann, H.
    ANIMAL COGNITION, 2012, 15 (04) : 525 - 537
  • [32] Visual object categorization: is it indeed an attention-free process?
    Rosenberg, Y.
    Shachar, M.
    Gronau, N.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2012, 48 : S99 - S99
  • [33] Visual complexity exerts opposing effects on object categorization and identification
    Gerlach, Christian
    Marques, J. Frederico
    VISUAL COGNITION, 2014, 22 (06) : 751 - 769
  • [34] Visual discrimination and object categorization in the cichlid Pseudotropheus sp.
    V. Schluessel
    G. Fricke
    H. Bleckmann
    Animal Cognition, 2012, 15 : 525 - 537
  • [35] BLasso for object categorization and retrieval: Towards interpretable visual models
    Rebai, Ahmed
    Joly, Alexis
    Boujemaa, Nozha
    PATTERN RECOGNITION, 2012, 45 (06) : 2377 - 2389
  • [36] CMIB: Unsupervised Image Object Categorization in Multiple Visual Contexts
    Yan, Xiaoqiang
    Ye, Yangdong
    Qiu, Xueying
    Manic, Milos
    Yu, Hui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (06) : 3974 - 3986
  • [37] Cross-modal transfer in visual and haptic object categorization
    Gaissert, N.
    Waterkamp, S.
    Van Dam, L.
    Buelthoff, I.
    PERCEPTION, 2011, 40 : 134 - 134
  • [38] Scale-Invariant Visual Language Modeling for Object Categorization
    Wu, Lei
    Hu, Yang
    Li, Mingjing
    Yu, Nenghai
    Hua, Xian-Sheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2009, 11 (02) : 286 - 294
  • [39] Concept-Specific Visual Vocabulary Construction for Object Categorization
    Zhang, Chunjie
    Liu, Jing
    Ouyang, Yi
    Lu, Hanqing
    Ma, Songde
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2009, 2009, 5879 : 936 - 942
  • [40] A comparison of neural circuits underlying auditory and visual object categorization
    Adams, RB
    Janata, P
    NEUROIMAGE, 2002, 16 (02) : 361 - 377