Soft Measure of Visual Token Occurrences for Object Categorization

被引:0
|
作者
Wang, Yanjie [1 ]
Liu, Xiabi [1 ]
Jia, Yunde [1 ]
机构
[1] Beijing Inst Technol, Beijing Lab Intelligent Informat Technol, Sch Comp Sci, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The improvement of bag-of-features image representation by statistical modeling of visual tokens has recently gained attention in the field of object categorization. This paper proposes a soft bag-of-features image representation based on Gaussian Mixture Modeling (GMM) of visual tokens for object categorization. The distribution of local features from each visual token is assumed as the CLAIM and learned from the training data by the Expectation-Maximization algorithm with a model selection method based on the Minimum Description Length. Consequently, we can employ Bayesian formula to compute posterior probabilities of being visual tokens for local features. According to these probabilities, three schemes of image representation are defined and compared for object categorization under a new discriminative learning framework of Bayesian classifiers; the Max-Min posterior Pseudo-probabilities (MMP). We evaluate the effectiveness of the proposed object categorization approach oil the Caltech-4 database and car side images from the University of Illinois. The experimental results with comparisons to those reported in other related work show that our approach is promising.
引用
收藏
页码:774 / 782
页数:9
相关论文
共 50 条
  • [1] A New Manifold Distance Measure for Visual Object Categorization
    Li, Fengfu
    Huang, Xiayuan
    Qiao, Hong
    Zhang, Bo
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2232 - 2236
  • [2] The timing of visual object categorization
    Mack, Michael L.
    Palmeri, Thomas J.
    FRONTIERS IN PSYCHOLOGY, 2011, 2
  • [3] Visual object categorization in infancy
    Spriet, Celine
    Abassi, Etienne
    Hochmann, Jean-Remy
    Papeo, Liuba
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (08)
  • [4] Visual Tracking of a Moving Object via the Soft Cosine Measure
    Moujahid, Driss
    Elharrouss, Omar
    Tairi, Hamid
    2017 3RD INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2017, : 319 - 326
  • [5] Exploring visual and haptic object categorization
    Gaissert, N.
    Wallraven, C.
    Buelthoff, H. H.
    PERCEPTION, 2009, 38 : 159 - 160
  • [6] Visual categorization and object representation in monkeys and humans
    Sigala, N
    Gabbiani, F
    Logothetis, NK
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2002, 14 (02) : 187 - 198
  • [7] A hierarchical matching framework for visual object categorization
    Jogan, Matjaž
    Elektrotehniski Vestnik/Electrotechnical Review, 2009, 76 (04): : 217 - 222
  • [8] Evidence of fixed capacity in visual object categorization
    Scharff, Alec
    Palmer, John
    Moore, Cathleen M.
    PSYCHONOMIC BULLETIN & REVIEW, 2011, 18 (04) : 713 - 721
  • [9] A Hierarchical Matching Framework for Visual Object Categorization
    Jogan, Matjaz
    ELEKTROTEHNISKI VESTNIK, 2009, 76 (04): : 217 - 222
  • [10] Compact Correlation Coding for Visual Object Categorization
    Morioka, Nobuyuki
    Satoh, Shin'ichi
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1639 - 1646