Extended hamiltonian formalism and Lorentz-violating lagrangians

被引:19
|
作者
Colladay, Don [1 ]
机构
[1] New Coll Florida, Sarasota, FL 34243 USA
关键词
RIEMANN-FINSLER GEOMETRY; CPT;
D O I
10.1016/j.physletb.2017.07.027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case. (C) 2017 The Author. Published by Elsevier B.V.
引用
收藏
页码:694 / 698
页数:5
相关论文
共 50 条
  • [21] Electron Radiation in Lorentz-Violating Vacuum
    A. V. Borisov
    T. G. Kiril’tseva
    Moscow University Physics Bulletin, 2020, 75 : 10 - 17
  • [22] Radiation of an Electron in a Lorentz-Violating Vacuum
    A. V. Borisov
    Physics of Particles and Nuclei Letters, 2023, 20 : 425 - 428
  • [23] Electron Radiation in Lorentz-Violating Vacuum
    Borisov, A. V.
    Kiril'tseva, T. G.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2020, 75 (01) : 10 - 17
  • [24] Lorentz-preserving fields in Lorentz-violating theories
    Ganguly, O.
    Gangopadhyay, D.
    Majumdar, P.
    EPL, 2011, 96 (06)
  • [25] Velocity in Lorentz-violating fermion theories
    Altschul, B
    Colladay, D
    PHYSICAL REVIEW D, 2005, 71 (12)
  • [26] Lorentz-violating alternative to the Higgs mechanism?
    Alexandre, Jean
    Mavromatos, Nick E.
    PHYSICAL REVIEW D, 2011, 84 (10):
  • [27] Bigravity and Lorentz-violating massive gravity
    Blas, D.
    Deffayet, C.
    Garriga, J.
    PHYSICAL REVIEW D, 2007, 76 (10):
  • [28] Lorentz-violating scenarios in a thermal reservoir
    Araujo Filho, A. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04):
  • [29] Detecting a Lorentz-violating field in cosmology
    Li, Baojiu
    Mota, David F.
    Barrow, John D.
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [30] Magnetic monopoles in Lorentz-violating electrodynamics
    Turcati, Rodrigo
    Scatena, Eslley
    PHYSICS LETTERS B, 2018, 786 : 332 - 336