Spatial Data Dependence Graph Simulator for Convolutional Neural Network Accelerators

被引:0
|
作者
Wang, Jooho [1 ]
Kim, Jiwon [1 ]
Moon, Sungmin [1 ]
Kim, Sunwoo [1 ]
Park, Sungkyung [2 ]
Park, Chester Sungchung [1 ]
机构
[1] Konkuk Univ, Dept Elect Engn, Seoul, South Korea
[2] Pusan Natl Univ, Dept Elect Engn, Busan, South Korea
来源
2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019) | 2019年
关键词
convolution neural network (CNN); accelerator; dataflow; data dependence graph;
D O I
10.1109/aicas.2019.8771561
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A spatial data dependence graph (S-DDG) is newly proposed to model an accelerator dataflow. The pre-RTL simulator based on the S-DDG helps to explore the design space in the early design phase. The simulation results show the impact of memory latency and bandwidth on a convolutional neural network (CNN) accelerator.
引用
收藏
页码:309 / 310
页数:2
相关论文
共 50 条
  • [31] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS ONE, 2023, 18 (03):
  • [32] Graph Wavelet Convolutional Neural Network for Spatiotemporal Graph Modeling
    Jiang, Shan
    Ding, Zhi-Ming
    Zhu, Mei-Ling
    Yan, Jin
    Xu, Xin-Run
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (03): : 726 - 741
  • [33] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS BIOLOGY, 2023, 21 (03)
  • [34] WETLAND MAPPING BY JOINTLY USE OF CONVOLUTIONAL NEURAL NETWORK AND GRAPH CONVOLUTIONAL NETWORK
    Jafarzadeh, Hamid
    Mahdianpari, Masoud
    Gill, Eric
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2219 - 2222
  • [35] A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
    Lin, Lan
    Xiong, Min
    Zhang, Ge
    Kang, Wenjie
    Sun, Shen
    Wu, Shuicai
    SENSORS, 2023, 23 (04)
  • [36] Distributed Heterogeneous Spiking Neural Network Simulator Using Sunway Accelerators
    Li, Xuelei
    Wang, Zhichao
    Pan, Yi
    Meng, Jintao
    Feng, Shengzhong
    Wei, Yanjie
    BIG DATA MINING AND ANALYTICS, 2024, 7 (04): : 1301 - 1320
  • [37] Robust Spatial Filtering With Graph Convolutional Neural Networks
    Such, Felipe Petroski
    Sah, Shagan
    Dominguez, Miguel Alexander
    Pillai, Suhas
    Zhang, Chao
    Michael, Andrew
    Cahill, Nathan D.
    Ptucha, Raymond
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (06) : 884 - 896
  • [39] Training the Convolutional Neural Network with Statistical Dependence of the Response on the Input Data Distortion
    Janiszewski, Igor M.
    Arlazarov, Vladimir V.
    Slugin, Dmitry G.
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [40] On the Location Dependence of Convolutional Neural Network Features
    Workman, Scott
    Jacobs, Nathan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,