Zhang-Zhang Polynomials of Multiple Zigzag Chains

被引:0
|
作者
Langner, Johanna [1 ,2 ]
Witek, Henryk A. [1 ,2 ]
Mos, Grzegorz [3 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Inst Mol Sci, Hsinchu, Taiwan
[3] Silesian Univ, Dept Math, Katowice, Poland
关键词
CLOSED-FORM FORMULAS; HEXAGONAL SYSTEMS; BENZENOID STRUCTURES; AROMATIC-HYDROCARBONS; CYCLO-POLYPHENACENES; RESONANCE ENERGY; STRUCTURE COUNTS; ZZDECOMPOSER; ALGORITHM; STRIPS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Generating functions of the Zhang-Zhang polynomials of multiple zigzag chains Z(m, n) and generalized multiple zigzag chains Z(k)(m, n) are derived for arbitrary values of the indices. These generating functions can be expressed in the form of highly regular finite continued fractions, Sigma(infinity)(m=0) ZZ(Z(m, n),z)t(m) = [0; -t,(-1)(2)zt,(-1)(3)zt,&,(-1)(n)zt, 1 + (-1)(n+1) zt], or, in the case of Z(k)(m, n), products of such continued fractions. For the particularly important case of the multiple zigzag chains Z(m, n), the generating functions are expanded to yield a closed form for the Zhang-Zhang polynomials of multiple zigzag chains Z(m, n) that is valid for arbitrary values of m and n.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 50 条
  • [31] ZHANG PEILI
    MacMillan, Kyle
    ART IN AMERICA, 2017, 105 (08): : 125 - 126
  • [33] ZHANG DALI
    Pollack, Barbara
    ARTNEWS, 2015, 114 (11): : 95 - 95
  • [34] Zhang Huan
    Ayers, Robert
    ARTNEWS, 2006, 105 (11): : 152 - 153
  • [35] Zhang Xiaogang
    Lovelace, C
    ART IN AMERICA, 2001, 89 (03): : 132 - 132
  • [36] Zhang Yimou
    Andersen, Jesper
    KOSMORAMA, 2005, (236): : 211 - 214
  • [37] Zhang Xiaogang
    Tinari, Philip
    ARTFORUM INTERNATIONAL, 2009, 47 (05): : 138 - 138
  • [38] On a question of Zhang
    McCarthy, Dermot
    Yang, Yong
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5133 - 5134
  • [39] Daxun Zhang
    Hormick, P
    STRAD, 2004, 115 (1372): : 783 - 783
  • [40] Zhang Hui
    Chinnery, Colin
    ARTFORUM INTERNATIONAL, 2009, 48 (01): : 313 - 314