Zhang-Zhang Polynomials of Multiple Zigzag Chains

被引:0
|
作者
Langner, Johanna [1 ,2 ]
Witek, Henryk A. [1 ,2 ]
Mos, Grzegorz [3 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Inst Mol Sci, Hsinchu, Taiwan
[3] Silesian Univ, Dept Math, Katowice, Poland
关键词
CLOSED-FORM FORMULAS; HEXAGONAL SYSTEMS; BENZENOID STRUCTURES; AROMATIC-HYDROCARBONS; CYCLO-POLYPHENACENES; RESONANCE ENERGY; STRUCTURE COUNTS; ZZDECOMPOSER; ALGORITHM; STRIPS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Generating functions of the Zhang-Zhang polynomials of multiple zigzag chains Z(m, n) and generalized multiple zigzag chains Z(k)(m, n) are derived for arbitrary values of the indices. These generating functions can be expressed in the form of highly regular finite continued fractions, Sigma(infinity)(m=0) ZZ(Z(m, n),z)t(m) = [0; -t,(-1)(2)zt,(-1)(3)zt,&,(-1)(n)zt, 1 + (-1)(n+1) zt], or, in the case of Z(k)(m, n), products of such continued fractions. For the particularly important case of the multiple zigzag chains Z(m, n), the generating functions are expanded to yield a closed form for the Zhang-Zhang polynomials of multiple zigzag chains Z(m, n) that is valid for arbitrary values of m and n.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 50 条
  • [1] Zhang-Zhang Polynomials of Multiple Zigzag Chains Revisited: A Connection with the John-Sachs Theorem
    Witek, Henryk A.
    MOLECULES, 2021, 26 (09):
  • [2] Clar Covers and Zhang-Zhang Polynomials of Zigzag and Armchair Carbon Nanotubes
    Wu, Meng-Han
    Witek, Henryk A.
    Podeszwa, Rafal
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2025, 93 (02)
  • [3] Zhang-Zhang Polynomials of Ribbons
    He, Bing-Hau
    Chou, Chien-Pin
    Langner, Johanna
    Witek, Henryk A.
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 14
  • [4] Zhang-Zhang polynomial of multiple linear hexagonal chains
    Gutman, I
    Borovicanin, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 73 - 77
  • [5] Zhang-Zhang Polynomials of Phenylenes and Benzenoid Graphs
    Tratnik, Niko
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 92 (01) : 25 - 53
  • [6] Zhang-Zhang polynomials of cyclo-polyphenacenes
    Guo, Qiuzhi
    Deng, Hanyuan
    Chen, Dandan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (02) : 347 - 362
  • [7] Zhang-Zhang Polynomials of Various Classes of Benzenoid Systems
    Chou, Chien-Pin
    Li, Yenting
    Witek, Henryk A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 31 - 64
  • [8] Zhang-Zhang Polynomials of a Class of Pericondensed Benzenoid Graphs
    Chen, Dandan
    Deng, Hanyuan
    Guo, Qiuzhi
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (02) : 401 - 410
  • [9] Zhang-Zhang Polynomials of Regular 5-tier Benzenoid Strips
    Witek, Henryk A.
    Langner, Johanna
    Mos, Grzegorz
    Chou, Chien-Pin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 78 (02) : 487 - 504
  • [10] ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures
    Chou, Chien-Pin
    Witek, Henryk A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2014, 71 (03) : 741 - 764