Algebraic kernel functions and representation of planar domains

被引:3
|
作者
Jeong, M [1 ]
Taniguchi, M
机构
[1] Univ Suwon, Dept Math, Suwon 445743, South Korea
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 606, Japan
关键词
conformal representation; Ahlfors map; Bergman kernel; Szego kernel; algebraic function; canonical domain;
D O I
10.4134/JKMS.2003.40.3.447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the non-degenerate n-connected canonical domains with n > I related to the conjecture of S. Bell in [4]. They are connected to the algebraic property of the Bergman kernel and the Szego kernel. We characterize the non-degenerate doubly connected canonical domains.
引用
收藏
页码:447 / 460
页数:14
相关论文
共 50 条
  • [21] On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions
    Zlotnikov, Ilya
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (03)
  • [22] On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions
    Ilya Zlotnikov
    Journal of Fourier Analysis and Applications, 2022, 28
  • [23] Algebraic Representation of Correlation Functions in Integrable Spin Chains
    H. Boos
    M. Jimbo
    T. Miwa
    F. Smirnov
    Y. Takeyama
    Annales Henri Poincaré, 2006, 7 : 1395 - 1428
  • [24] Representation of Algebraic Structures by Boolean Functions and Its Applications
    Markovski, Smile
    Bakeva, Verica
    Dimitrova, Vesna
    Popovska-Mitrovikj, Aleksandra
    ICT INNOVATIONS 2017: DATA-DRIVEN INNOVATION, 2017, 778 : 229 - 239
  • [25] REPRESENTATION OF FUNCTIONS OF BESOV CLASS ON MANIFOLDS BY ALGEBRAIC POLYNOMIALS
    NIKOLSKII, SM
    ACTA MATHEMATICA HUNGARICA, 1995, 68 (1-2) : 99 - 109
  • [26] Algebraic representation of correlation functions in integrable spin chains
    Boos, H.
    Jimbo, M.
    Miwa, T.
    Smirnov, F.
    Takeyama, Y.
    ANNALES HENRI POINCARE, 2006, 7 (7-8): : 1395 - 1428
  • [27] HEAT KERNEL, EIGENFUNCTIONS, AND CONDITIONED BROWNIAN-MOTION IN PLANAR DOMAINS
    BANUELOS, R
    DAVIS, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (01) : 188 - 200
  • [28] Analytic in planar domains functions with preassigned asymptotic set
    Ganenkova, Ekaterina G.
    Starkov, Victor V.
    JOURNAL OF APPLIED ANALYSIS, 2014, 20 (01) : 7 - 14
  • [29] Christoffel functions on planar domains with piecewise smooth boundary
    A. Prymak
    O. Usoltseva
    Acta Mathematica Hungarica, 2019, 158 : 216 - 234
  • [30] Polarization tensors of planar domains as functions of the admittivity contrast
    Griesmaier, Roland
    Hanke, Martin
    APPLICABLE ANALYSIS, 2017, 96 (06) : 970 - 987