On a class of nonlinear nonlocal fractional differential equations

被引:5
|
作者
Fazli, Hossein [1 ]
Sun, Hongguang [1 ]
Aghchi, Sima [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
[2] Univ Santiago de Compostela, Dept Anal Matemat Estadist & Optimizac, Santiago De Compostela 15782, Spain
[3] Univ Santiago de Compostela, Inst Matemat, Santiago De Compostela 15782, Spain
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; extremal solution; nonlocal conditions; Bagley-Torvik equation; Basset equation; EXISTENCE;
D O I
10.37193/CJM.2021.03.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of extremal solutions for a class of fractional differential equations in the area of fluid dynamics. By establishing a new comparison theorem and applying the classical monotone iterative approach, we establish sufficient conditions to ensure the existence of the extremal solutions and construct twin convergent monotone explicit iterative schemes. Generalized nonlinear nonlocal Bagley-Torvik equation and generalized Basset equation with nonlinear source functions are some special cases of our discussed problem.
引用
收藏
页码:441 / 448
页数:8
相关论文
共 50 条
  • [41] Existence and uniqueness of solution for a class of nonlinear fractional differential equations
    Ma, Shichang
    Xu, Yufeng
    Yue, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2012, : 1 - 11
  • [42] ON THE EXISTENCE OF MILD SOLUTIONS FOR A CLASS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS IN THE α-NORM
    Abbas, Mohamed I.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (02) : 141 - 154
  • [43] Solvability for a class of nonlocal singular fractional differential equations of Lane Emden type
    Gouari, Yazid
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (05) : 1221 - 1240
  • [44] Optimal Controls for a Class of Impulsive Katugampola Fractional Differential Equations with Nonlocal Conditions
    Chen, Xingru
    Gu, Haibo
    Sun, Yu
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [45] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    BOUNDARY VALUE PROBLEMS, 2014,
  • [46] FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL KATUGAMPOLA FRACTIONAL INTEGRAL
    Emin, Sedef
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 155 - 157
  • [47] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    Boundary Value Problems, 2014
  • [48] NONLINEAR NONLOCAL ψ-CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE
    Liang, Jin
    Mu, Yunyi
    Xiao, Ti-jun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [49] EXISTENCE RESULTS FOR IMPULSIVE NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS
    Liu, Zhenhai
    Lv, Jingyun
    MATHEMATICA SLOVACA, 2015, 65 (06) : 1291 - 1308
  • [50] A nonlocal Cauchy problem for nonlinear generalized fractional integro-differential equations
    Kharat, Vinod V.
    Tate, Shivaji
    Reshimkar, Anand Rajshekhar
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 489 - 506