Derivative of the Lieb definition for the energy functional of density-functional theory with respect to the particle number and the spin number

被引:14
|
作者
Gal, T. [1 ]
Geerlings, P. [1 ]
机构
[1] Free Univ Brussels VUB, Dept Gen Chem, ALGC, B-1050 Brussels, Belgium
关键词
GROUND-STATE ENERGIES; KOHN; DISCONTINUITY; DIFFERENTIATION; POTENTIALS; DEPENDENCE; SYSTEMS; DFT;
D O I
10.1103/PhysRevA.81.032512
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The nature of the explicit dependence on the particle number N and on the spin number N-s of the Lieb definition for the energy density functional is examined both in spin- independent and in spin- polarized density functional theory. It is pointed out that the nonuniqueness of the external magnetic field B(r) corresponding to a given pair of ground-state density n(r) and spin density s(r) in spin-polarized density functional theory implies the nonexistence of the total derivative of the SDFT Lieb functional F-N(,Ns)L [n, s] with respect to N-s. By giving a suitable extension of F-N(L)[n] and F-N(L),(Ns) [n,s] for N not equal integral n(r) dr and N-s not equal integral s(r) dr, it is then shown that their derivatives with respect to N and N s are equal to the derivatives, with respect to N and Ns, of the total energies E[N, upsilon] and E[N, N-s, upsilon, B] minus the external- field energy components, respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] DENSITY-FUNCTIONAL THEORY
    PARR, RG
    CHEMICAL & ENGINEERING NEWS, 1990, 68 (29) : 45 - 45
  • [32] EXCHANGE-CORRELATION POTENTIALS IN DENSITY-FUNCTIONAL AND SPIN-DENSITY-FUNCTIONAL THEORY
    NG, TK
    PHYSICAL REVIEW B, 1989, 39 (14): : 9947 - 9958
  • [33] Scaling the spin densities separately in density-functional theory
    Magyar, R.J.
    Whittingham, T.K.
    Burke, K.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (02): : 1 - 022105
  • [34] Subsystem functionals in density-functional theory: Investigating the exchange energy per particle
    Armiento, R
    Mattsson, AE
    PHYSICAL REVIEW B, 2002, 66 (16) : 1 - 17
  • [35] Spin caloric transport from density-functional theory
    Popescu, Voicu
    Kratzer, Peter
    Entel, Peter
    Heiliger, Christian
    Czerner, Michael
    Tauber, Katarina
    Toepler, Franziska
    Herschbach, Christian
    Fedorov, Dmitry V.
    Gradhand, Martin
    Mertig, Ingrid
    Kovacik, Roman
    Mavropoulos, Phivos
    Wortmann, Daniel
    Bluegel, Stefan
    Freimuth, Frank
    Mokrousov, Yuriy
    Wimmer, Sebastian
    Koedderitzsch, Diemo
    Seemann, Marten
    Chadova, Kristina
    Ebert, Hubert
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (07)
  • [36] SPIN VIRIAL-THEOREM IN THE DENSITY-FUNCTIONAL THEORY
    NAGY, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1994, 49 (04) : 353 - 361
  • [37] Scaling the spin densities separately in density-functional theory
    Magyar, RJ
    Whittingham, TK
    Burke, K
    PHYSICAL REVIEW A, 2002, 66 (02)
  • [38] Differentiability of Lieb functional in electronic density functional theory
    Lammert, Paul E.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (10) : 1943 - 1953
  • [39] Spin gaps and spin-flip energies in density-functional theory
    Capelle, K.
    Vignale, G.
    Ullrich, C. A.
    PHYSICAL REVIEW B, 2010, 81 (12)
  • [40] Density-functional tight binding - an approximate density-functional theory method
    Seifert, Gotthard
    Joswig, Jan-Ole
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (03) : 456 - 465