Going After the k-SAT Threshold

被引:0
|
作者
Coja-Oghlan, Amin [1 ]
Panagiotou, Konstantinos [2 ]
机构
[1] Goethe Univ, Math Inst, D-60054 Frankfurt, Germany
[2] Univ Munich, Math Inst, Theresienstr 39, D-80333 Munich, Germany
基金
欧洲研究理事会;
关键词
Random Structures; Phase Transitions; k-SAT Second Moment Method; Belief Propagation; SATISFIABILITY; BOUNDS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Random k-SAT is the single most intensely studied example of a random constraint satisfaction problem. But despite substantial progress over the past decade, the threshold for the existence of satisfying assignments is not known precisely for any k > 3. The best current results, based on the second moment method, yield upper and lower bounds that differ by an additive k " hi 2/2, a tenn that is unbounded in k (Achlioptas, Peres: STOC 2003). The basic reason for this gap is the inherent asymmetry of the Boolean values 'true' and 'false' in contrast to the perfect symmetry, e.g., among the various colors in a graph coloring problem. Here we develop a new asymmetric second moment method that allows us to tackle this issue head on for the first time in the theory of random CSPs. This technique enables us to compute the k-SAT threshold up to an additive 1[12 0(1,1k),,,, 0.19. Independently of the rigorous work, physicists have developed a sophisticated but non-rigorous technique called the "cavity method" for the study of random CSPs (Mhzard, Parisi, Zecchina: Science 2002). Our result matches the best bound that can be obtained from the so-called "replica symmetric" version of the cavity method, and indeed our proof directly harnesses parts of the physics Cal C a Iti.
引用
收藏
页码:705 / 714
页数:10
相关论文
共 50 条
  • [31] The K-SAT Problem in a Simple Limit
    Luca Leuzzi
    Giorgio Parisi
    Journal of Statistical Physics, 2001, 103 : 679 - 695
  • [32] A BETTER ALGORITHM FOR RANDOM k-SAT
    Coja-Oghlan, Amin
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2823 - 2864
  • [33] Weak lumpability in the k-SAT problem
    Grinfeld, M
    Knight, PA
    APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 49 - 53
  • [34] Analysis of backtracking of random k-SAT
    Xu, Ke
    Li, Wei
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (05): : 454 - 458
  • [35] A Better Algorithm for Random k-SAT
    Coja-Oghlan, Amin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 292 - 303
  • [36] The K-SAT problem in a simple limit
    Leuzzi, L
    Parisi, G
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) : 679 - 695
  • [37] On the critical exponents of random k-SAT
    Wilson, DB
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) : 182 - 195
  • [38] A novel weighting scheme for random k-SAT关于随机 k-SAT 的新加权方法
    Jun Liu
    Ke Xu
    Science China Information Sciences, 2016, 59
  • [39] A Note on Random k-SAT for Moderately Growing k
    Liu, Jun
    Gao, Zongsheng
    Xu, Ke
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [40] BELIEF PROPAGATION ON THE RANDOM k-SAT MODEL
    Coja-Oghlan, Amin
    Mueller, Noela
    Ravelomanan, Jean B.
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3718 - 3796