PERTURBATION METHODS FOR NONLOCAL KIRCHHOFF-TYPE PROBLEMS

被引:14
|
作者
D'Onofrio, Luigi [1 ]
Fiscella, Alessio [2 ]
Bisci, Giovanni Molica [3 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Studi Aziendali & Quantitat, Via Parisi 13, I-80100 Naples, Italy
[2] Univ Estadual Campinas, IMECC, Dept Matemat, Rua Sergio Buarque Holanda,651 Campinas, BR-13083859 Campinas, SP, Brazil
[3] Univ Mediterranea Reggio Calabria, Dipartimento PAU, Via Melissari 24, I-89124 Reggio Di Calabria, Italy
关键词
Kirchhoff-type problems; existence of solutions; fractional Sobolev spaces; variational methods; MULTIPLICITY; EXISTENCE; EQUATIONS;
D O I
10.1515/fca-2017-0044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of infinitely many solutions for a class of Dirichlet elliptic problems driven by a bi-nonlocal operator u bar right arrow M(parallel to u parallel to(2))(-Delta)(s)u, where M models a Kirchhoff-type coefficient while (-Delta)(s) denotes the fractional Laplace operator. More precisely, by adapting to our bi-nonlocal framework the variational and topological tools introduced in [16], we establish the existence of infinitely many solutions. The main feature and difficulty of our problems is due to the possible degenerate nature of the Kirchhoff term M.
引用
收藏
页码:829 / 853
页数:25
相关论文
共 50 条
  • [21] Kirchhoff-type problems on a geodesic ball of the hyperbolic space
    Bisci, Giovanni Molica
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 : 55 - 73
  • [22] Solutions for critical Kirchhoff-type problems with near resonance
    Lei, Chunyu
    Lei, Yutian
    Zhang, Binlin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 513 (01)
  • [23] Infinitely many positive solutions for Kirchhoff-type problems
    He, Xiaoming
    Zou, Wenming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) : 1407 - 1414
  • [24] Multiplicity Theorems for Biharmonic Kirchhoff-Type Elliptic Problems
    Kong, Lingju
    MINIMAX THEORY AND ITS APPLICATIONS, 2023, 8 (02): : 381 - 392
  • [25] Perturbed fourth-order Kirchhoff-type problems
    Heidarkhani, Shapour
    Moradi, Shahin
    Caristi, Giuseppe
    Ge, Bin
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (04): : 113 - 143
  • [26] On the asymptotically cubic generalized quasilinear Schrodinger equations with a Kirchhoff-type perturbation
    Li, Guofa
    Qiu, Chong
    Cheng, Bitao
    Wang, Wenbo
    FRONTIERS IN PHYSICS, 2023, 11
  • [27] Variable exponent q(m)-Kirchhoff-type problems with nonlocal terms and logarithmic nonlinearity on compact Riemannian manifolds
    Hind Bouaam
    Mohamed El Ouaarabi
    Chakir Allalou
    Said Melliani
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [28] Variable exponent q(m)-Kirchhoff-type problems with nonlocal terms and logarithmic nonlinearity on compact Riemannian manifolds
    Bouaam, Hind
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (03)
  • [29] Nontrivial solutions of Kirchhoff-type problems via the Yang index
    Perera, K
    Zhang, ZT
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (01) : 246 - 255
  • [30] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Duan, Qingwei
    Guo, Lifeng
    Zhang, Binlin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)