Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight

被引:25
|
作者
Kang, Katie
Belkhale, Suneel
Kahn, Gregory
Abbeel, Pieter
Levine, Sergey
机构
基金
美国国家科学基金会;
关键词
D O I
10.1109/icra.2019.8793735
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep reinforcement learning provides a promising approach for vision-based control of real-world robots. However, the generalization of such models depends critically on the quantity and variety of data available for training. This data can be difficult to obtain for some types of robotic systems, such as fragile, small-scale quadrotors. Simulated rendering and physics can provide for much larger datasets, but such data is inherently of lower quality: many of the phenomena that make the real-world autonomous flight problem challenging, such as complex physics and air currents, are modeled poorly or not at all, and the systematic differences between simulation and the real world are typically impossible to eliminate. In this work, we investigate how data from both simulation and the real world can be combined in a hybrid deep reinforcement learning algorithm. Our method uses real-world data to learn about the dynamics of the system, and simulated data to learn a generalizable perception system that can enable the robot to avoid collisions using only a monocular camera. We demonstrate our approach on a real-world nano aerial vehicle collision avoidance task, showing that with only an hour of real-world data, the quadrotor can avoid collisions in new environments with various lighting conditions and geometry. Code, instructions for building the aerial vehicles, and videos of the experiments can be found at github.com/gkahn13/GtS
引用
收藏
页码:6008 / 6014
页数:7
相关论文
共 50 条
  • [31] Vision-Based Robotic Object Grasping-A Deep Reinforcement Learning Approach
    Chen, Ya-Ling
    Cai, Yan-Rou
    Cheng, Ming-Yang
    MACHINES, 2023, 11 (02)
  • [32] A Vision-based Irregular Obstacle Avoidance Framework via Deep Reinforcement Learning
    Gao, Lingping
    Ding, Jianchuan
    Liu, Wenxi
    Piao, Haiyin
    Wang, Yuxin
    Yang, Xin
    Yin, Baocai
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 9262 - 9269
  • [33] Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning
    Zhou, Xiaomao
    Bai, Tao
    Gao, Yanbin
    Han, Yuntao
    SENSORS, 2019, 19 (07)
  • [34] Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving
    Prakash, Aditya
    Behl, Aseem
    Ohn-Bar, Eshed
    Chitta, Kashyap
    Geiger, Andreas
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 11760 - 11770
  • [35] Vision-based Autonomous Vehicle Recognition: A New Challenge for Deep Learning-based Systems
    Boukerche, Azzedine
    Ma, Xiren
    ACM COMPUTING SURVEYS, 2021, 54 (04)
  • [36] Vision-based Navigation of UAV with Continuous Action Space Using Deep Reinforcement Learning
    Zhou, Benchun
    Wang, Weihong
    Liu, Zhenghua
    Wang, Jia
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5030 - 5035
  • [37] Adversarial Black-Box Attacks on Vision-based Deep Reinforcement Learning Agents
    Tanev, Atanas
    Pavlitskaya, Svetlana
    Sigloch, Joan
    Roennau, Arne
    Dillmann, Ruediger
    Zoellner, J. Marius
    2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2021, : 177 - 181
  • [38] Vision-Based Method Integrating Deep Learning Detection for Tracking Multiple Construction Machines
    Xiao, Bo
    Kang, Shih-Chung
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2021, 35 (02)
  • [39] Deep Reinforcement Learning for Vision-Based Navigation of UAVs in Avoiding Stationary and Mobile Obstacles
    Kalidas, Amudhini P.
    Joshua, Christy Jackson
    Md, Abdul Quadir
    Basheer, Shakila
    Mohan, Senthilkumar
    Sakri, Sapiah
    DRONES, 2023, 7 (04)
  • [40] Vision-Based Deep Reinforcement Learning For UR5 Robot Motion Control
    Jiang, Rong
    Wang, Zhipeng
    He, Bin
    Di, Zhou
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 246 - 250