Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight

被引:25
|
作者
Kang, Katie
Belkhale, Suneel
Kahn, Gregory
Abbeel, Pieter
Levine, Sergey
机构
基金
美国国家科学基金会;
关键词
D O I
10.1109/icra.2019.8793735
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep reinforcement learning provides a promising approach for vision-based control of real-world robots. However, the generalization of such models depends critically on the quantity and variety of data available for training. This data can be difficult to obtain for some types of robotic systems, such as fragile, small-scale quadrotors. Simulated rendering and physics can provide for much larger datasets, but such data is inherently of lower quality: many of the phenomena that make the real-world autonomous flight problem challenging, such as complex physics and air currents, are modeled poorly or not at all, and the systematic differences between simulation and the real world are typically impossible to eliminate. In this work, we investigate how data from both simulation and the real world can be combined in a hybrid deep reinforcement learning algorithm. Our method uses real-world data to learn about the dynamics of the system, and simulated data to learn a generalizable perception system that can enable the robot to avoid collisions using only a monocular camera. We demonstrate our approach on a real-world nano aerial vehicle collision avoidance task, showing that with only an hour of real-world data, the quadrotor can avoid collisions in new environments with various lighting conditions and geometry. Code, instructions for building the aerial vehicles, and videos of the experiments can be found at github.com/gkahn13/GtS
引用
收藏
页码:6008 / 6014
页数:7
相关论文
共 50 条
  • [1] Towards monocular vision-based autonomous flight through deep reinforcement learning
    Kim, Minwoo
    Kim, Jongyun
    Jung, Minjae
    Oh, Hyondong
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [2] Autonomous Landing on a Moving Platform Using Vision-Based Deep Reinforcement Learning
    Ladosz, Pawel
    Mammadov, Meraj
    Shin, Heejung
    Shin, Woojae
    Oh, Hyondong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4575 - 4582
  • [3] Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement Learning
    Cai, Peide
    Wang, Hengli
    Huang, Huaiyang
    Liu, Yuxuan
    Liu, Ming
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 7262 - 7269
  • [4] Vision-Based Autonomous Navigation Approach for a Tracked Robot Using Deep Reinforcement Learning
    Ejaz, Muhammad Mudassir
    Tang, Tong Boon
    Lu, Cheng-Kai
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 2230 - 2240
  • [5] A Deep Reinforcement Learning Technique for Vision-Based Autonomous Multirotor Landing on a Moving Platform
    Rodriguez-Ramos, Alejandro
    Sampedro, Carlos
    Bavle, Hriday
    Gil Moreno, Ignacio
    Campoy, Pascual
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1010 - 1017
  • [6] CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-Based Autonomous Urban Driving
    Zhao, Yinuo
    Wu, Kun
    Xu, Zhiyuan
    Che, Zhengping
    Lu, Qi
    Tang, Jian
    Liu, Chi Harold
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3481 - 3489
  • [7] Vision-based Navigation Using Deep Reinforcement Learning
    Kulhanek, Jonas
    Derner, Erik
    de Bruin, Tim
    Babuska, Robert
    2019 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR), 2019,
  • [8] Vision-based Deep Reinforcement Learning to Control a Manipulator
    Kim, Wonchul
    Kim, Taewan
    Lee, Jonggu
    Kim, H. Jin
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1046 - 1050
  • [9] Vision-Based Autonomous Driving: A Hierarchical Reinforcement Learning Approach
    Wang, Jiao
    Sun, Haoyi
    Zhu, Can
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (09) : 11213 - 11226
  • [10] Monocular Vision based Autonomous Landing of Quadrotor through Deep Reinforcement Learning
    Xu, Yinbo
    Liu, Zhihong
    Wang, Xiangke
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10014 - 10019