A combinatorial proof of strict unimodality for q-binomial coefficients

被引:7
|
作者
Dhand, Vivek
机构
关键词
Young's lattice; Strict unimodality; Symmetric chain decomposition; CONSTRUCTIVE PROOF;
D O I
10.1016/j.disc.2014.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I. Pak and G. Panova recently proved that the g-binomial coefficient ((m+n)(m))(q) is a strictly unimodal polynomial in q for m, n >= 8, via the representation theory of the symmetric group. We give a direct combinatorial proof of their result by characterizing when a product of chains is strictly unimodal and then applying O'Hara's structure theorem for the partition lattice L(m, n). In fact, we prove a stronger result: if m, n >= 8d, and 2d <= r <= mn/2, then the rth rank of L(m, n) has at least d more elements than the next lower rank. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 24
页数:5
相关论文
共 50 条
  • [41] On the divisibility of sums of even powers of q-binomial coefficients
    Liu, Ji-Cai
    Jiang, Xue-Ting
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [42] SIEVED PARTITION-FUNCTIONS AND Q-BINOMIAL COEFFICIENTS
    GARVAN, F
    STANTON, D
    MATHEMATICS OF COMPUTATION, 1990, 55 (191) : 299 - 311
  • [43] Distribution of multinomial and q-binomial coefficients modulo p
    Barbolosi, D
    Grabner, PJ
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 129 - 135
  • [44] Some congruences involving central q-binomial coefficients
    Guo, Victor J. W.
    Zeng, Jiang
    ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (03) : 303 - 316
  • [45] Several identities for products of reciprocals of q-binomial coefficients
    Zhang, Zhizheng
    Wu, Yun
    UTILITAS MATHEMATICA, 2015, 96 : 191 - 208
  • [46] Some congruences with q-binomial coefficients and q-harmonic numbers
    Koparal, Sibel
    Omur, Nese
    Elkhiri, Laid
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 445 - 458
  • [47] Conjugation of overpartitions and some applications of over q-binomial coefficients
    Munagi, Augustine O.
    Ngubane, Siphephelo
    ANNALES MATHEMATICAE ET INFORMATICAE, 2023, 59 : 71 - 82
  • [48] The negative q-binomial
    Fu, Shishuo
    Reiner, V.
    Stanton, Dennis
    Thiem, Nathaniel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [49] Factors of certain sums involving central q-binomial coefficients
    Victor J. W. Guo
    Su-Dan Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [50] ANY INTEGER DIVIDES ALMOST ALL Q-BINOMIAL COEFFICIENTS
    CASTEVENS, P
    HOWARD, FT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A572 - A572