Does elevated CO2 alter silica uptake in trees?

被引:22
|
作者
Fulweiler, Robinson W. [1 ,2 ]
Maguire, Timothy J. [2 ]
Carey, Joanna C. [3 ]
Finzi, Adrien C. [2 ]
机构
[1] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
[2] Boston Univ, Dept Biol, Boston, MA 02215 USA
[3] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
来源
关键词
elevated CO2; silicon; forest Siuptake; terrestrial Si pump; active Si accumulation; Si cycling; RISING ATMOSPHERIC CO2; BIOGENIC SILICA; ENRICHMENT FACE; CARBON; ACCUMULATION; NITROGEN; CYCLE; INCREASES; TRANSPIRATION; AVAILABILITY;
D O I
10.3389/fpls.2014.00793
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, long-term free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Plant biomass responses to elevated CO2 are mediated by phosphorus uptake
    Han, Ximei
    Zhou, Guiyao
    Luo, Qin
    Ferlian, Olga
    Zhou, Lingyan
    Meng, Jingjing
    Qi, Yuan
    Pei, Jianing
    He, Yanghui
    Liu, Ruiqiang
    Du, Zhenggang
    Long, Jilan
    Zhou, Xuhui
    Eisenhauer, Nico
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 863
  • [22] Enhancing biomass production and yield by maintaining enhanced capacity for CO2 uptake in response to elevated CO2
    Dahal, Keshav
    Weraduwage, Sarathi M.
    Kane, Khalil
    Rauf, Shezad A.
    Leonardos, Evangelos D.
    Gadapati, Winona
    Savitch, Leonid
    Singh, Jas
    Marillia, Elizabeth-France
    Taylor, David C.
    Micallef, Malgre C.
    Knowles, Vicki
    Plaxton, William
    Barron, John
    Sarhan, Fathey
    Huener, Norman
    Grodzinski, Bernard
    Micallef, Barry J.
    CANADIAN JOURNAL OF PLANT SCIENCE, 2014, 94 (06) : 1075 - 1083
  • [23] Does fertilizer application alter the effects of elevated CO2 on Carex leaf litter quality and in situ decomposition in an alpine grassland?
    Arnone, JA
    Hirschel, G
    ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 1997, 18 (03): : 201 - 206
  • [24] Physiological responses of Norway spruce trees to elevated CO2 and SO2
    Tausz, M
    DeKok, LJ
    Stulen, I
    Grill, D
    JOURNAL OF PLANT PHYSIOLOGY, 1996, 148 (3-4) : 362 - 367
  • [25] PRODUCTIVITY AND COMPENSATORY RESPONSES OF YELLOW-POPLAR TREES IN ELEVATED CO2
    NORBY, RJ
    GUNDERSON, CA
    WULLSCHLEGER, SD
    ONEILL, EG
    MCCRACKEN, MK
    NATURE, 1992, 357 (6376) : 322 - 324
  • [26] Elevated CO2 reduces sap flux in mature deciduous forest trees
    Cech, PG
    Pepin, S
    Körner, C
    OECOLOGIA, 2003, 137 (02) : 258 - 268
  • [27] Stem respiration of Norway spruce trees under elevated CO2 concentration
    Acosta, M.
    Pokorny, R.
    Janous, D.
    Marek, M. V.
    BIOLOGIA PLANTARUM, 2010, 54 (04) : 773 - 776
  • [28] Stomatal conductance in mature deciduous forest trees exposed to elevated CO2
    Keel, Sonja Gisela
    Pepin, Steeve
    Leuzinger, Sebastian
    Koerner, Christian
    TREES-STRUCTURE AND FUNCTION, 2007, 21 (02): : 151 - 159
  • [29] ELEVATED CO2 EFFECTS ON STOMATAL DENSITY OF WHEAT AND SOUR ORANGE TREES
    ESTIARTE, M
    PENUELAS, J
    KIMBALL, BA
    IDSO, SB
    LAMORTE, RL
    PINTER, PJ
    WALL, GW
    GARCIA, RL
    JOURNAL OF EXPERIMENTAL BOTANY, 1994, 45 (280) : 1665 - 1668
  • [30] Stomatal conductance in mature deciduous forest trees exposed to elevated CO2
    Sonja Gisela Keel
    Steeve Pepin
    Sebastian Leuzinger
    Christian Körner
    Trees, 2007, 21 : 261 - 261