Towards Thwarting Template Side-Channel Attacks in Secure Cloud Deduplications

被引:17
|
作者
Zhang, Yuan [1 ,2 ]
Mao, Yunlong [1 ,2 ]
Xu, Minze [1 ,2 ]
Xu, Fengyuan [1 ,2 ]
Zhong, Sheng [1 ,2 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Comp Sci & Technol Dept, Nanjing 210023, Peoples R China
基金
国家重点研发计划;
关键词
Servers; Protocols; Cloud computing; Privacy; Encryption; Side-channel attacks; Cloud; secure deduplication; privacy; proofs of ownership; EFFICIENT;
D O I
10.1109/TDSC.2019.2911502
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As one of a few critical technologies to cloud storage service, deduplication allows cloud servers to save storage space by deleting redundant file copies. However, it often leaks side channel information regarding whether an uploading file gets deduplicated or not. Exploiting this information, adversaries can easily launch a template side-channel attack and severely harm cloud users' privacy. To thwart this kind of attack, we resort to the k-anonymity privacy concept to design secure threshold deduplication protocols. Specifically, we have devised a novel cryptographic primitive called "dispersed convergent encryption" (DCE) scheme, and proposed two different constructions of it. With these DCE schemes, we successfully construct secure threshold deduplication protocols that do not rely on any trusted third party. Our protocols not only support confidentiality protections and ownership verifications, but also enjoy formal security guarantee against template side-channel attacks even when the cloud server could be a "covert adversary" who may violate the predefined threshold and perform deduplication covertly. Experimental evaluations show our protocols enjoy very good performance in practice.
引用
收藏
页码:1008 / 1018
页数:11
相关论文
共 50 条
  • [31] Towards security limits in side-channel attacks (with an application to block ciphers)
    Standaert, F. -X.
    Peeters, E.
    Archambeau, C.
    Quisquater, J. -J.
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2006, PROCEEDINGS, 2006, 4249 : 30 - 45
  • [32] DRM to Counter Side-Channel Attacks?
    Benadjila, Ryad
    Billet, Olivier
    Francfort, Stanislas
    DRM'07: PROCEEDINGS OF THE 2007 ACM WORKSHOP ON DIGITAL RIGHTS MANAGEMENT, 2007, : 23 - 32
  • [33] Codes for Side-Channel Attacks and Protections
    Guilley, Sylvain
    Heuser, Annelie
    Rioul, Olivier
    CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 35 - 55
  • [34] Side-Channel Attacks in a Real Scenario
    Ming Tang
    Maixing Luo
    Junfeng Zhou
    Zhen Yang
    Zhipeng Guo
    Fei Yan
    Liang Liu
    Tsinghua Science and Technology, 2018, 23 (05) : 586 - 598
  • [35] Synthesis of Adaptive Side-Channel Attacks
    Quoc-Sang Phan
    Bang, Lucas
    Pasareanu, Corina S.
    Malacaria, Pasquale
    Bultan, Tevfik
    2017 IEEE 30TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2017, : 328 - 342
  • [36] Side-Channel Attacks in a Real Scenario
    Tang, Ming
    Luo, Maixing
    Zhou, Junfeng
    Yang, Zhen
    Guo, Zhipeng
    Yan, Fei
    Liu, Liang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2018, 23 (05) : 586 - 598
  • [37] Optimal Collision Side-Channel Attacks
    Glowacz, Cezary
    Grosso, Vincent
    SMART CARD RESEARCH AND ADVANCED APPLICATIONS, CARDIS 2019, 2020, 11833 : 126 - 140
  • [38] Side-Channel Attacks on Cryptographic Software
    Lawson, Nate
    IEEE SECURITY & PRIVACY, 2009, 7 (06) : 65 - 68
  • [39] Side-Channel Attacks: A Short Tour
    Piessens, Frank
    van Oorschot, Paul C.
    Piessens, Frank
    van Oorshot, Paul C.
    IEEE SECURITY & PRIVACY, 2024, 22 (02) : 75 - 80
  • [40] Cache Side-Channel Attacks and Defenses
    Zhang W.
    Bai L.
    Ling Y.
    Lan X.
    Jia X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (01): : 206 - 222