Evaluating Machine Learning Algorithms For Bengali Fake News Detection

被引:2
|
作者
Mugdha, Shafaya Bin Shabbir [1 ]
Ferdous, Sayeda Muntaha [1 ]
Fahmin, Ahmed [1 ]
机构
[1] United Int Univ, Dept Comp Sci & Engn, Dhaka, Bangladesh
关键词
Headlines; Machine Learning (ML); Natural Language Processing (NLP);
D O I
10.1109/ICCIT51783.2020.9392662
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this world of modern technologies and media, online news publications and portals are increasing at a high speed. That is why, nowadays, it has become almost impossible to check out the traditional fact of news headlines and examine them due to the increase in the number of content writers, online media portals, and news portals. Mostly, fake headlines are filled with bogus or misleading content. They attract the commoners by putting phony words or misleading fraudulent content in the headlines to increase their views and share. But, the se fake and misleading headlines create havoc in the commoner's life and misguide them in many ways. That is why we took a step so that the commoners can differentiate between fake and real news. We proposed a model that can successfully detect whether the story is fake or accurate based on the news headlines. We created a novel data set of Bengali language and achieved our aim and reached the target using the Gaussian Naive Bayes algorithm. We have used other algorithms, but the Gaussian Naive Algorithm has performed well in our model. This algorithm used a text feature dependent on TF-IDF and an Extra Tree Classifier to choose the attribute. In our model, using Gaussian Naive Bayes we got 87% accuracy which is comparatively best than any other algorithm we used in this model.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Semantic Fake News Detection: A Machine Learning Perspective
    Brasoveanu, Adrian M. P.
    Andonie, Razvan
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT I, 2019, 11506 : 656 - 667
  • [22] Detection of fake news from social media using support vector machine learning algorithms
    Sudhakar, M.
    Kaliyamurthie, K.P.
    Measurement: Sensors, 2024, 32
  • [23] Detection of Fake Twitter Accounts with Machine Learning Algorithms
    Aydin, Ilhan
    Sevi, Mehmet
    Salur, Mehmet Umut
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [24] Effective prediction of fake news using two machine learning algorithms
    Sudhakar M.
    Kaliyamurthie K.P.
    Measurement: Sensors, 2022, 24
  • [25] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [26] Multiclass Fake News Detection using Ensemble Machine Learning
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 103 - 107
  • [27] Machine Learning-Based Approach for Fake News Detection
    Gururaj H.L.
    Lakshmi H.
    Soundarya B.C.
    Flammini F.
    Janhavi V.
    Journal of ICT Standardization, 2022, 10 (04): : 509 - 530
  • [28] Fake News Detection Using Pos Tagging and Machine Learning
    Kansal, Afreen
    JOURNAL OF APPLIED SECURITY RESEARCH, 2023, 18 (02) : 164 - 179
  • [29] Fake news detection using supervised machine learning techniques
    Malhotra, Pooja
    Malik, Sanjay Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (01): : 7 - 15
  • [30] A comprehensive survey on machine learning approaches for fake news detection
    Jawaher Alghamdi
    Suhuai Luo
    Yuqing Lin
    Multimedia Tools and Applications, 2024, 83 : 51009 - 51067