Enhanced production of nonanedioic acid from nonanoic acid by engineered Escherichia coli

被引:9
|
作者
Lee, Yongjoo [1 ]
Sathesh-Prabu, Chandran [1 ]
Kwak, Geun Hwa [2 ]
Bang, Ina [1 ]
Jung, Hyun Wook [2 ]
Kim, Donghyuk [1 ,2 ]
Lee, Sung Kuk [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy& Chem Engn, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Biomed Engn, Ulsan, South Korea
基金
新加坡国家研究基金会;
关键词
adaptive laboratory evolution; biotransformation; medium chain fatty acids; nonanedioic acid; nonanoic acid; CHAIN FATTY-ACIDS; PSEUDOMONAS-PUTIDA GPO1; DIPEPTIDE PERMEASE; LONG; IDENTIFICATION; OXYFUNCTIONALIZATION; TRANSPORT; SYSTEM; EFFLUX; GENES;
D O I
10.1002/biot.202000416
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this study, whole-cell biotransformation was conducted to produce nonanedioic acid from nonanoic acid by expressing the alkane hydroxylating system (AlkBGT) from Pseudomonas putida GPo1 in Escherichia coli. Following adaptive laboratory evolution, an efficient E. coli mutant strain, designated as MRE, was successfully obtained, demonstrating the fastest growth (27-fold higher) on nonanoic acid as the sole carbon source compared to the wild-type strain. Additionally, the MRE strain was engineered to block nonanoic acid degradation by deleting fadE. The resulting strain exhibited a 12.8-fold increase in nonanedioic acid production compared to the wild-type strain. Six mutations in acrR, P-crp, dppA, P-fadD, e14, and yeaR were identified in the mutant MRE strain, which was characterized using genomic modifications and RNA-sequencing. The acquired mutations were found to be beneficial for rapid growth and nonanedioic acid production.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid
    Wang, Dan
    Li, Qiang
    Song, Ziyu
    Zhou, Wei
    Su, Zhiguo
    Xing, Jianmin
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2011, 86 (04) : 512 - 518
  • [22] Enhanced production of succinic acid by metabolically engineered Escherichia coli with amplified activities of malic enzyme and fumarase
    Hong, SH
    Lee, SY
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2004, 9 (04) : 252 - 255
  • [23] Enhanced production of polysialic acid by metabolic engineering of Escherichia coli
    Chen, Fang
    Tao, Yong
    Jin, Cheng
    Xu, Yang
    Lin, Bai-Xue
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (06) : 2603 - 2611
  • [24] Enhanced production of polysialic acid by metabolic engineering of Escherichia coli
    Fang Chen
    Yong Tao
    Cheng Jin
    Yang Xu
    Bai-Xue Lin
    Applied Microbiology and Biotechnology, 2015, 99 : 2603 - 2611
  • [25] Metabolic engineering of Escherichia coli for enhanced production of hyaluronic acid
    Eskasalam, Syafira Rizqi
    Ashoor, Selim
    Seong, Hyeon Jeong
    Jang, Yu-Sin
    BIOTECHNOLOGY LETTERS, 2025, 47 (02)
  • [26] Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli
    Maeda, Toshinari
    Sanchez-Torres, Viviana
    Wood, Thomas K.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 77 (04) : 879 - 890
  • [27] Enhanced succinate production from glycerol by engineered Escherichia coli strains
    Li, Qing
    Wu, Hui
    Li, Zhimin
    Ye, Qin
    BIORESOURCE TECHNOLOGY, 2016, 218 : 217 - 223
  • [28] Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli
    Toshinari Maeda
    Viviana Sanchez-Torres
    Thomas K. Wood
    Applied Microbiology and Biotechnology, 2007, 77 : 879 - 890
  • [29] Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli
    Olajuyin, Ayobami Matthew
    Yang, Maohua
    Liu, Yilan
    Mu, Tingzhen
    Tian, Jiangnan
    Adaramoye, Oluwatosin Adekunle
    Xing, Jianmin
    BIORESOURCE TECHNOLOGY, 2016, 214 : 653 - 659
  • [30] Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli
    Cheng, Zhuan
    Jiang, Jiaqi
    Wu, Hui
    Li, Zhimin
    Ye, Qin
    BIORESOURCE TECHNOLOGY, 2016, 200 : 897 - 904