Contamination an the rare-earth element orthophosphate reference samples

被引:11
|
作者
Donovan, JJ [1 ]
Hanchar, JM
Picolli, PM
Schrier, MD
Boatner, LA
Jarosewich, E
机构
[1] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA
[2] George Washington Univ, Dept Earth & Environm Sci, Washington, DC 20006 USA
[3] Univ Maryland, Dept Geol, College Pk, MD 20742 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA
[6] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA
关键词
EPMA; microanalysis; orthophosphates; quantitative analysis; rare earth elements; rare earth phosphates; REE; standards;
D O I
10.6028/jres.107.056
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Several of the fourteen rare-earth element (plus Sc and Y) orthophosphate standards grown at Oak Ridge National Laboratory in the 1980s and widely distributed by the Smithsonian Institution's Department of Mineral Sciences, are significantly contaminated by Pb. The origin of this impurity is the Pb2P2O7 flux that is derived from the thermal decomposition of PbHPO4. The lead pyrophosphate flux is used to dissolve the oxide starting materials at elevated temperatures (approximate to 1360 degreesC) prior to the crystal synthesis. Because these rare-earth element standards are extremely stable under the electron beam and considered homogenous, they have been of enormous value to electron probe microanalysis (EPMA). The monoclinic, monazite structure, orthophosphates show a higher degree of Pb incorporation than the tetragonal xenotime structure, orthophosphates. This paper will attempt to describe and rationalize the extent of the Pb contamination in these otherwise excellent materials.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 50 条
  • [21] OPTIMIZATION OF CONDITIONS OF SUBLIMATION OF RARE-EARTH ELEMENT VOLATILE COMPOUNDS BASED ON ADDUCTS OF RARE-EARTH ELEMENT ACETYLACETONATES WITH HEXAMETHYLPHOSPHORTRIAMIDE
    KUZMINA, NP
    CHEMLEVA, TA
    CHECHERNIKOVA, MV
    MARTYNENKO, LI
    ZHURNAL NEORGANICHESKOI KHIMII, 1986, 31 (12): : 3016 - 3021
  • [22] Rare-earth element distribution characteristics of biological chains in rare-earth element-high background regions and their implications
    Hui Zhang
    Jia Feng
    Weifang Zhu
    Congqiang Liu
    Dongsen Wu
    Wenjiao Yang
    Jianghong Gu
    Biological Trace Element Research, 2000, 73 : 19 - 27
  • [23] SELECTIVE PHOTOIONIZATION OF RARE-EARTH ELEMENT ISOTOPES
    ZHIDKOV, AG
    KRYNETSKII, BB
    JOURNAL OF RUSSIAN LASER RESEARCH, 1994, 15 (01) : 34 - 41
  • [24] SYNTHESIS AND STUDY OF RARE-EARTH ELEMENT ORTHANYLATES
    BARANOVA, TA
    PIRKES, SB
    LAPITSKAYA, AV
    SHEREMET, NV
    ZHURNAL NEORGANICHESKOI KHIMII, 1990, 35 (09): : 2337 - 2340
  • [25] COEFFICIENTS OF THE RARE-EARTH ELEMENT DISTRIBUTION IN ONGONITES
    KOVALENKO, VI
    ANTIPIN, VS
    SALMIN, IP
    TATARKIN, MA
    DOKLADY AKADEMII NAUK SSSR, 1985, 284 (05): : 1231 - 1235
  • [26] RARE-EARTH ELEMENT SYSTEMATICS IN HYDROTHERMAL FLUIDS
    MICHARD, A
    GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (03) : 745 - 750
  • [27] Lattice dynamics of the rare-earth element samarium
    Bauder, Olga
    Piekarz, Przemyslaw
    Barla, Alessandro
    Sergueev, Ilya
    Rueffer, Rudolf
    Lazewski, Jan
    Baumbach, Tilo
    Parlinski, Krzysztof
    Stankov, Svetoslav
    PHYSICAL REVIEW B, 2013, 88 (22)
  • [28] RARE-EARTH ELEMENT COMPOSITION OF ATMOSPHERIC PARTICULATES
    POTTS, MJ
    LEE, CW
    CADIEUX, JR
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1974, 8 (06) : 585 - 587
  • [29] Thermal conductivity of rare-earth element dodecaborides
    J Phys Condens Matter, 47 (8927):
  • [30] RARE-EARTH ELEMENT GEOCHEMISTRY OF QIANAN CHARNOCKITE
    WANG, KY
    BAI, YL
    YANG, RY
    HUANG, ZX
    SCIENTIA GEOLOGICA SINICA, 1984, (03): : 330 - 340