Invariance of the support of solutions for a sixth-order thin film equation

被引:1
|
作者
Liu, Changchun [1 ]
Zhang, Xiaoli [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Sixth order nonlinear parabolic equation; Degenerate; Invariance of support;
D O I
10.1016/j.crma.2015.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the invariance of the support of solutions for a sixth-order nonlinear parabolic equation, which arises in the industrial application of the isolation oxidation of silicium. Based on the suitable integral inequalities, we establish the invariance of the support of solutions. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 50 条
  • [41] EXISTENCE AND BLOW-UP OF SOLUTIONS FOR THE SIXTH-ORDER DAMPED BOUSSINESQ EQUATION
    Wang, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (05): : 1057 - 1071
  • [42] Weak Solutions for a Sixth-Order Phase-Field Equation with Degenerate Mobility
    Duan, Ning
    Li, Zhenbang
    Liu, Fengnan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1857 - 1883
  • [43] Weak Solutions for a Sixth-Order Phase-Field Equation with Degenerate Mobility
    Ning Duan
    Zhenbang Li
    Fengnan Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1857 - 1883
  • [44] A sixth-order compact finite difference scheme to the numerical solutions of Burgers' equation
    Sari, Murat
    Gurarslan, Gurhan
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) : 475 - 483
  • [45] GLOBAL EXISTENCE AND POINTWISE ESTIMATES OF SOLUTIONS FOR THE GENERALIZED SIXTH-ORDER BOUSSINESQ EQUATION
    Guo, Changhong
    Fang, Shaomei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (05) : 1457 - 1487
  • [46] EXACT SOLUTIONS OF THE GENERALIZED POCHHAMMER-CHREE EQUATION WITH SIXTH-ORDER DISPERSION
    Triki, Houria
    Benlalli, Abdelkrim
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (7-8): : 935 - 951
  • [47] Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation
    Xu Runzhang
    Yang Yanbing
    Liu Bowei
    Shen Jihong
    Huang Shaobin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 955 - 976
  • [48] Rigorous Derivation of a Linear Sixth-Order Thin-Film Equation as a Reduced Model for Thin Fluid-Thin Structure Interaction Problems
    Bukal, Mario
    Muha, Boris
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02): : 2245 - 2288
  • [49] Approximate homotopy symmetry method: Homotopy series solutions to the sixth-order Boussinesq equation
    Jiao XiaoYu
    Gao Yuan
    Lou SenYue
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (08): : 1169 - 1178
  • [50] Nonlinear wave solutions for an integrable sixth-order nonlinear Schrodinger equation in an optical fiber
    Jiang, Xiao-Hang
    Gao, Yi-Tian
    Huang, Qian-Min
    OPTIK, 2017, 144 : 685 - 697