Recursive Renyi's Entropy estimator for adaptive filtering

被引:0
|
作者
Xu, JW [1 ]
Erdogmus, D [1 ]
Ozturk, MC [1 ]
Principe, JC [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Comp Neuroengn Lab, Gainesville, FL 32611 USA
来源
PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently we have proposed a recursive estimator for Renyi's quadratic entropy. This estimator can converge to accurate results for stationary signals or track the changing entropy of nonstationary signals. In this paper, we demonstrate the application of the recursive entropy estimator to supervised and unsupervised training of linear and nonlinear adaptive systems. The simulations suggest a smooth and fast convergence to the optimal solution with a reduced complexity in the algorithm compared to a batch training approach using the same entropy-based criteria. The presented approach also allows on-line information theoretic adaptation of model parameters.
引用
收藏
页码:134 / 137
页数:4
相关论文
共 50 条
  • [21] RECURSIVE CALIBRATION OF INDUSTRIAL MANIPULATORS BY ADAPTIVE FILTERING
    YAO, YL
    WU, SM
    JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1995, 117 (03): : 406 - 411
  • [22] Threshold selection using Renyi's entropy
    Univ of Louisville, Louisville, United States
    Pattern Recognit, 1 (71-84):
  • [23] Informed guessing of an eavesdropper's Renyi entropy
    Myers, JM
    Wu, TT
    QUANTUM INFORMATION AND COMPUTATION, 2003, 5105 : 11 - 18
  • [24] Renyi's entropy for residual lifetime distribution
    Abraham, B
    Sankaran, PG
    STATISTICAL PAPERS, 2006, 47 (01) : 17 - 29
  • [25] Adaptive sampling with Renyi entropy in Monte Carlo path tracing
    Xu, Q
    Hu, RJ
    Xing, LP
    Xu, Y
    2005 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Vols 1 and 2, 2005, : 784 - 788
  • [26] Threshold selection using Renyi's entropy
    Sahoo, P
    Wilkins, C
    Yeager, J
    PATTERN RECOGNITION, 1997, 30 (01) : 71 - 84
  • [27] Disequilibrium, thermodynamic relations, and Renyi's entropy
    Pennini, F.
    Plastino, A.
    PHYSICS LETTERS A, 2017, 381 (04) : 212 - 215
  • [28] An Information Bottleneck Problem with Renyi's Entropy
    Weng, Jian-Jia
    Alajaji, Fady
    Linder, Tamas
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2489 - 2494
  • [29] Nonadditivity of Renyi entropy and Dvoretzky's theorem
    Aubrun, Guillaume
    Szarek, Stanislaw
    Werner, Elisabeth
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [30] Weighted Renyi's entropy for lifetime distributions
    Nourbakhsh, Mohammadreza
    Yari, Gholamhoseein
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (14) : 7085 - 7098