A geometric approach to finding new lower bounds of A (n, d, w)

被引:4
|
作者
Gashkov, I. [1 ]
Ekberg, J. A. O. [1 ]
Taub, D. [1 ]
机构
[1] Karlstad Univ, Dept Math, Karlstad, Sweden
关键词
constant weight code;
D O I
10.1007/s10623-007-9064-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Certain classes of binary constant weight codes can be represented geometrically using linear structures in Euclidean space. The geometric treatment is concerned mostly with codes with minimum distance 2(w - 1), that is, where any two codewords coincide in at most one entry; an algebraic generalization of parts of the theory also applies to some codes without this property. The presented theorems lead to several improvements of the tables of lower bounds on A (n, d, w) maintained by E. M. Rains and N. J. A. Sloane, and the ones recently published by D. H. Smith, L. A. Hughes and S. Perkins. Some of these new codes can be proven optimal.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [31] Error Bounds for Discrete Geometric Approach
    Codecasa, Lorenzo
    Trevisan, Francesco
    CMES - Computer Modeling in Engineering and Sciences, 2010, 59 (02): : 155 - 179
  • [32] Error Bounds for Discrete Geometric Approach
    Codecasa, Lorenzo
    Trevisan, Francesco
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 59 (02): : 155 - 179
  • [33] NEW LOWER BOUNDS FOR ARITHMETIC, GEOMETRIC, HARMONIC MEAN INEQUALITIES AND ENTROPY UPPER BOUND
    Lu, Guoxiang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1041 - 1050
  • [34] FINDING LOWER BOUNDS FOR EIGENVALUES OF NONLINEAR EIGENVALUE PROBLEMS
    JONES, LH
    SIAM REVIEW, 1972, 14 (03) : 531 - +
  • [35] LOWER BOUNDS FOR DISTRIBUTED MAXIMUM-FINDING ALGORITHMS
    PACHL, J
    KORACH, E
    ROTEM, D
    JOURNAL OF THE ACM, 1984, 31 (04) : 905 - 918
  • [36] Finding lower bounds for nondeterministic state complexity is hard
    Gruber, Hermann
    Holzer, Markus
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2006, 4036 : 363 - 374
  • [37] Recent lower bounds for geometric-arithmetic index
    Portilla, Ana
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    DISCRETE MATHEMATICS LETTERS, 2019, 1 : 59 - 82
  • [38] Lower Bounds on the State Complexity of Geometric Goppa Codes
    T. Blackmore
    G. H. Norton
    Designs, Codes and Cryptography, 2002, 25 : 95 - 115
  • [39] Explicit Lower Bounds via Geometric Complexity Theory
    Buergisser, Peter
    Ikenmeyer, Christian
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 141 - 150
  • [40] Lower bounds on the state complexity of geometric Goppa codes
    Blackmore, T
    Norton, GH
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (01) : 95 - 115