Optimal control of linear systems with delay

被引:0
|
作者
Balashevich, N. V.
Gabasov, R.
Kirillova, F. M.
机构
[1] Belarussian Acad Sci, Inst Math, Minsk 220072, BELARUS
[2] Belarusian State Univ, Minsk 220080, BELARUS
关键词
DOKLADY Mathematic; Optimal Program; Optimal Controller; Dual Method; Optimal Feedback;
D O I
10.1134/S1064562406050413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A real-time optimal control method is described for systems with delay in which the current optimal feedback values required for control on each interval are calculated in the control process. The formation of signals for a control process by applying optimal feedback synthesized preliminarily is called the optimal closed-loop control of the dynamical system. The optimal program is based on an iterative transformation of supports starting with an arbitrary one and ending with an optimal support. If the inequalities are unsatisfied, then the solution process halts and the pseudoprogram is the optimal program of the problem. The integration of the equation with delay is reduced to the integration of a collection of systems of ordinary differential equations (ODE). The dual method proposed for computing an optimal program underlies a real-time algorithm for the performance of an optimal controller, generating an optimal feedback implementation in each particular control process.
引用
收藏
页码:780 / 785
页数:6
相关论文
共 50 条
  • [31] ON OPTIMAL-CONTROL OF SYSTEMS WITH DELAY IN THE CONTROL
    HAMMARSTROM, LG
    WALLER, KV
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, 1980, 27 (04): : 301 - 303
  • [32] Optimal filtering for linear state delay systems
    Basin, M
    Rodriguez-Gonzalez, J
    Martinez-Zuñiga, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) : 684 - 690
  • [33] Optimal impulsive control of delay systems
    Delmotte, Florent
    Verriest, Erik I.
    Egerstedt, Magnus
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (04) : 767 - 779
  • [34] OPTIMAL CONTROL FOR SWITCHED DELAY SYSTEMS
    Liu, Xiaomei
    Zhang, Kanjian
    Li, Shengtao
    Wei, Haikun
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2014, 10 (04): : 1555 - 1566
  • [35] Optimal guaranteed control of delay systems
    Gabasov R.
    Dmitruk N.M.
    Kirillova F.M.
    Proceedings of the Steklov Institute of Mathematics, 2006, 255 (Suppl 2) : S26 - S46
  • [36] Optimal guaranteed control of delay systems
    Gabasov, R.
    Dmitruk, N. M.
    Kirillova, F. M.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2006, 12 (02): : 27 - 46
  • [37] Robust control of linear systems with delay
    Ivanova, E.G.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 1994, (01): : 35 - 41
  • [38] CONTROL OF LINEAR SYSTEMS WITH TIME DELAY
    MAYNE, DQ
    ELECTRONICS LETTERS, 1968, 4 (20) : 439 - +